High vigor seeds have greater yield potential than those with low vigor; however, long-term storage leads to a decline in this trait. The objective of this study was to identify quantitative trait loci (QTLs) for seed vigor-related traits under artificial aging conditions using a high-density genetic linkage map of wheat (Triticum aestivum) and mine the related candidate genes. A doubled haploid population, derived from a cross between Hanxuan 10 × Lumai 14, was used as the experimental material. Six controlled-environment treatments were set up, i.e. the seeds were aged for 0, 24, 36, 48, 60, and 72 h at a high temperature (48 °C) and under high humidity (relative humidity 100%). Eight traits including seed germination percentage, germination energy, germination index, seedling length, root length, seedling weight, vigor index, and simple vigor index were measured. With the prolongation of artificial aging treatment, these traits showed a continuous downward trend and significant correlations were observed between most of them. A total of 49 additive QTLs for seed vigor-related traits were mapped onto 12 chromosomes (1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A); and each one accounted for 6.01–17.18% of the phenotypic variations. Twenty-five pairs of epistatic QTLs were detected on all chromosomes, except for 5D, 6A, and 7D, and each epistasis accounted for 7.35–26.06% of the phenotypic variations. Three additive QTL hot spots were found on chromosomes 5A, 5B, and 5D, respectively. 13 QTLs, QGEe5B, QGIe5B, QSLc5B, QSLd5B, QSLf5B, QRLd5B, QRLe5B, QRLf5B, QVId5B, QVIe5B, QVIf5B, QSVId5B, and QSVIe5B, were located in the marker interval AX-94643729 ~ AX-110529646 on 5B and the physical interval 707,412,449–710,959,479 bp. Genes including TRAESCS5B01G564900, TRAESCS5B01G564200, TRAESCS5B01G562600, TraesCS5B02G562700, TRAESCS5B01G561300, TRAESCS5B01G561400, and TRAESCS5B01G562100, located in this marker interval, were found to be involved in regulating the processes of carbohydrate and lipid metabolism, transcription, and cell division during the germination of aging seeds, thus they were viewed as candidate genes for seed viability-related traits. These findings provide the basis for the seed-based cloning and functional identification of related candidate genes for seed vigor.