Pulmonary surfactant, a critical determinant of alveolar stability, is secreted by alveolar type II cells by exocytosis of lamellar bodies (LBs). To determine exocytosis mechanisms in situ, we imaged single alveolar cells from the isolated blood-perfused rat lung. We quantified cytosolic Ca(2+) concentration ([Ca(2+)](i)) by the fura 2 method and LB exocytosis as the loss of cell fluorescence of LysoTracker Green. We identified alveolar cell type by immunofluorescence in situ. A 15-s lung expansion induced synchronous [Ca(2+)](i) oscillations in all alveolar cells and LB exocytosis in type II cells. The exocytosis rate correlated with the frequency of [Ca(2+)](i) oscillations. Fluorescence of the lipidophilic dye FM1-43 indicated multiple exocytosis sites per cell. Intracellular Ca(2+) chelation and gap junctional inhibition each blocked [Ca(2+)](i) oscillations and exocytosis in type II cells. We demonstrated the feasibility of real-time quantifications in alveolar cells in situ. We conclude that in lung expansion, type II cell exocytosis is modulated by the frequency of intercellularly communicated [Ca(2+)](i) oscillations that are likely to be initiated in type I cells. Thus during lung inflation, type I cells may act as alveolar mechanotransducers that regulate type II cell secretion.
The present study provides evidence that emergence of CD4-independent HIV-1 virus in vivo may occur in HIV-1-infected patients. In addition, these results shed light on the mechanisms involved in liver damage in HIV-1-infected individuals, which could have important implications concerning the range of mutability and the pathogenesis of AIDS.
Although alveoli clear liquid by active transport, the presence of surface-active material on the alveolar surface suggests that convective mechanisms for rapid liquid removal may exist. To determine such mechanisms, we held the isolated blood-perfused rat lung at a constant alveolar pressure (PA). Under videomicroscopy, we micropunctured a single alveolus to infuse saline or Ringer solution in approximately 10 adjacent alveoli. Infused alveoli were lost from view. However, as the infused liquid cleared, the alveoli reappeared and their diameters could be quantified. Hence the time-dependent determination of alveolar diameter provided a means for quantifying the time to complete liquid removal (C(t)) in single alveoli. All determinations were obtained at an PA of 5 cmH(2)O. C(t), which related inversely to alveolar diameter, averaged 4.5 s in alveoli with the fastest liquid removal. Injections of dye-stained liquid revealed that the liquid flowed from the injected alveoli to adjacent air-filled alveoli. Lung hyperinflations instituted by cycling PA between 5 and 15 cmH(2)O decreased C(t) by 50%. Chelation of intracellular Ca(2+) prolonged C(t) and abolished the inflation-induced enhancement of liquid removal. We conclude that when liquid is injected in a few alveoli, it rapidly flows to adjacent air-filled alveoli. The removal mechanisms are dependent on alveolar size, inflation, and intracellular Ca(2+). We speculate that removal of liquid from the alveolar surface is determined by the curvature and surface-active properties of the air-liquid interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.