The purpose of this study is to examine the possibility of establishing a novel CO 2 absorption process with molten alkali carbonate using a bubble column reactor. In our previous study, a hot CO 2 recovery process using Li 4 SiO 4 suspended in molten Li 2 CO 3-K 2 CO 3 was developed. In the process, molten alkali carbonate itself showed great potential for CO 2 absorption at high temperature. If a hot CO 2 absorption process were established using only molten alkali carbonate, it could make the system simpler and the operating temperature range could be extended without the limitation of reaction temperature of solid absorbent. In the study, molten Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 and its eutectic mixture were selected as CO 2 absorbent. A bubble column was chosen as the device for gas absorption at high temperature. First, the CO 2 absorption performance of each single molten alkali carbonate was investigated. The result showed that the molten Li 2 CO 3 had a great ability to absorb CO 2 at high temperature. Li 2 O was thought to be produced by decomposition of Li 2 CO 3 during the melting and purging process and a reaction of CO 2 with Li 2 O occurred during the absorption process. Further, the CO 2 absorption performance of eutectic mixture increased exponentially with increasing the ratio of Li 2 CO 3 in composition. Second, the possibility of establishing a CO 2 absorption process using molten Li 2 CO 3 was examined. The overall CO 2 absorption process in the bubble column was investigated and the experimental results showed that the mass transfer of CO 2 into molten Li 2 CO 3 was the rate-controlling step. The operational conditions of the bubble column were optimized. The super cial gas velocity was an important operational parameter that a ected both the CO 2 absorption rate and total amount of CO 2 nally absorbed in the bubble column. The operating temperature also greatly a ected the amount of absorbed CO 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.