To explore mechanisms underlying triglyceride (TG) accumulation in livers of chow-fed apo E-deficient mice (Kuipers, F., J.M. van Ree, M.H. Hofker, H. Wolters, G. In't Veld, R.J. Vonk, H.M.G. Princen, and L.M. Havekes. 1996. Hepatology. 24:241-247), we investigated the effects of apo E deficiency on secretion of VLDL-associated TG (a) in vivo in mice, (b) in isolated perfused mouse livers, and (c) in cultured mouse hepatocytes. (a) Hepatic VLDL-TG production rate in vivo, determined after Triton WR1339 injection, was reduced by 46% in apo E-deficient mice compared with controls. To eliminate the possibility that impaired VLDL secretion is caused by aspecific changes in hepatic function due to hypercholesterolemia, VLDL-TG production rates were also measured in apo E-deficient mice after transplantation of wild-type mouse bone marrow. Bone marrow- transplanted apo E-deficient mice, which do not express apo E in hepatocytes, showed normalized plasma cholesterol levels, but VLDL-TG production was reduced by 59%. (b) VLDL-TG production by isolated perfused livers from apo E-deficient mice was 50% lower than production by livers from control mice. Lipid composition of nascent VLDL particles isolated from the perfusate was similar for both groups. (c) Mass VLDL-TG secretion by cultured apo E-deficient hepatocytes was reduced by 23% compared with control values in serum-free medium, and by 61% in the presence of oleate in medium (0. 75 mM) to stimulate lipogenesis. Electron microscopic evaluation revealed a smaller average size for VLDL particles produced by apo E-deficient cells compared with control cells in the presence of oleate (38 and 49 nm, respectively). In short-term labeling studies, apo E-deficient and control cells showed a similar time-dependent accumulation of [3H]TG formed from [3H]glycerol, yet secretion of newly synthesized VLDL-associated [3H]TG by apo E-deficient cells was reduced by 60 and 73% in the absence and presence of oleate, respectively. We conclude that apo E, in addition to its role in lipoprotein clearance, has a physiological function in the VLDL assembly-secretion cascade.
The aim of this review is to summarise the current understanding concerning the mechanism of action by which plant sterols affect cholesterol metabolism and thus exert their cholesterol-lowering effect. The review will focus on the gut, e.g. on the physico-chemical effects at the gastric-duodenal level, on absorptive site effects, and on intra-cellular trafficking, i.e. effects at the epithelial cell level.
The citrus flavonoids hesperidin and naringin have been suggested to lower blood total (TC) and LDL-cholesterol (LDL-C) both in animal models and humans. However, the evidence from previous studies in humans is not convincing. This study evaluated the LDL-C-lowering efficacy of pure hesperidin and naringin in moderately hypercholesterolemic individuals. A total of 204 healthy men and women with a serum TC concentration of 5.0-8.0 mmol/L participated in a randomized, placebo-controlled, parallel trial with 3 groups. A 4-wk preintervention period during which participants refrained from consuming hesperidin and naringin sources preceded the intervention. During the 4-wk intervention, the participants applied the same dietary restrictions and consumed 4 capsules/d providing either placebo (cellulose) or a daily dose of 800 mg hesperidin or 500 mg naringin. Blood samples to measure serum lipids were taken on 2 consecutive days at the beginning and end of the intervention phase. One hundred ninety-four participants completed the study. They maintained their prestudy body weights (mean changes lt 0.2 kg in all groups). In all groups, the mean consumption of scheduled capsules was gt 99%. Hesperidin and naringin did not affect TC or LDL-C, with endpoint LDL-C concentrations (adjusted for baseline) of 4.00 +/- 0.04, 3.99 +/- 0.04, and 3.99 +/- 0.04 mmol/L for control, hesperidin, and naringin groups, respectively. These citrus flavonoids also did not affect serum HDL-cholesterol and triglyceride concentrations. In conclusion, pure hesperidin and naringin consumed in capsules at mealtime do not lower serum TC and LDL-C concentrations in moderately hypercholesterolemic men and women.
Intake of PS-enriched foods increases plasma sitosterol and campesterol concentrations. However, total PS remain below 1% of total sterols circulating in the blood.
This study aimed to investigate whether the combination of plant sterol esters (PSE) with soy protein or soy isoflavones may have extra cholesterol-lowering effects. Male hamsters (n=20/group) were fed diets containing (g/100 g diet) (A) 20 casein (control), (B) 0.24 PSE, (C) 20 intact soy protein (replacing casein), (D) 0.02 soy isoflavones, (E) 0.24 PSE plus 20 soy protein (replacing casein), or (F) 0.24 PSE plus 0.02 soy isoflavones, for 5 wk. All diets contained 0.08 g cholesterol/100 g diet. Compared with the control diet, the PSE and soy protein diets significantly lowered the plasma total cholesterol concentration by 13% (P<0.05) and 9% (P<0.05), respectively, whereas the isoflavone diet (D) had no effect. The combination of PSE and soy protein (diet E) decreased plasma total cholesterol by 26% (P<0.05). The decrease in plasma cholesterol concentration was mainly in the non-HDL fraction. In addition, the combination of PSE and soy protein significantly decreased plasma triacylglycerol concentration (37%, P<0.05) and reduced cholesterol accumulation in the liver. The abundance of hepatic LDL-receptors was not influenced by any of the test diets. PSE selectively increased fecal excretion of neutral sterols by 190% (P<0.05), whereas soy protein increased fecal excretion of neutral sterols and bile acids by 66% (P<0.05) and 130% (P<0.05), respectively. The combination of PSE and soy protein increased the fecal excretion of neutral sterols and bile acids compared with PSE and soy protein alone. In conclusion, the combination of PSE and soy protein more dramatically lowers plasma lipids than the individual ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.