Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.
Banana ( Musa spp.) is one of the world’s most important staple and cash crops. Despite accumulating genetic and transcriptomic data, low transformation efficiency in agronomically important Musa spp. render translational researches in banana difficult by using conventional knockout approaches. To develop tools for translational research in bananas, we developed a virus induced-gene silencing (VIGS) system based on a banana-infecting cucumber mosaic virus (CMV) isolate, CMV 20. CMV 20 genomic RNA 1, 2, and 3, were separately cloned in Agrobacterium pJL89 binary vectors, and a cloning site was introduced on RNA 2 immediately after the 2a open reading frame to insert the gene targeted for silencing. An efficient Agrobacterium inoculation method was developed for banana, which enabled the CMV 20 VIGS vector infection rate to reach 95% in our experiments. CMV 20-based silencing of Musa acuminata cv. Cavendish (AAA group) glutamate 1-semialdehyde aminotransferase ( MaGSA ) produced a typical chlorotic phenotype and silencing of M. acuminata phytoene desaturase ( MaPDS ) produced a photobleachnig phenotype. We show this approach efficiently reduced GSA and PDS transcripts to 10% and 18% of the control, respectively. The high infection rate and extended silencing of this VIGS system will provide an invaluable tool to accelerate functional genomic studies in banana.
Transgenic approaches employing RNA interference (RNAi) strategies have been successfully applied to generate desired traits in plants; however, variations between RNAi transgenic siblings and the ability to quickly apply RNAi resistance to diverse cultivars remain challenging. In this study, we assessed the promoter activity of a cauliflower mosaic virus 35S promoter (35S) and a phloem-specific promoter derived from rice tungro bacilliform virus (RTBV) and their efficacy to drive RNAi against the endogenous glutamate-1-semialdehyde aminotransferase gene (GSA) that acts as a RNAi marker, through chlorophyll synthesis inhibition, and against tomato yellow leaf curl Thailand virus (TYLCTHV), a begomovirus (family Geminiviridae) reported to be the prevalent cause of tomato yellow leaf curl disease (TYLCD) in Taiwan. Transgenic Nicotiana benthamiana expressing hairpin RNA of GSA driven by either the 35S or RTBV promoter revealed that RTBV::hpGSA induced stronger silencing along the vein and more uniformed silencing phenotype among its siblings than 35S::hpGSA. Analysis of transgenic N. benthamiana, 35S::hpTYLCTHV, and RTBV::hpTYLCTHV revealed that, although 35S::hpTYLCTHV generated a higher abundance of small RNA than RTBV::hpTYLCTHV, RTBV::hpTYLCTHV transgenic plants conferred better TYLCTHV resistance than 35S::hpTYLCTHV. Grafting of wild-type (WT) scions to TYLCTHV RNAi rootstocks allowed transferable TYLCTHV resistance to the scion. A TYLCTHV-inoculation assay showed that noninfected WT scions were only observed when grafted to RTBV::hpTYLCTHV rootstocks but not 35S::hpTYLCTHV nor WT rootstocks. Together, our findings demonstrate an approach that may be widely applied to efficiently confer TYLCD resistance.
Tomato (Solanum lycopersicum) is an important economic crop worldwide. However, tomato production is jeopardized by the devastating tomato yellow leaf curl disease (TYLCD) caused by whitefly-transmitted begomoviruses (WTBs). In this study, we evaluated the efficacy of our previously developed plant antiviral immunity inducer, fungal F8-culture filtrate, on tomato to combat tomato yellow leaf curl Thailand virus (TYLCTHV), the predominant WTB in Taiwan. Our results indicated that F8-culture filtrate treatment induced strong resistance, did not reduce the growth of tomato, and induced prominent resistance against TYLCTHV both in the greenhouse and in the field. Among TYLCTHV-inoculated Yu-Nu tomato grown in the greenhouse, a greater percentage of plants treated with F8-culture filtrate (43–100%) were healthy-looking compared to the H2O control (0–14%). We found that TYLCTHV cannot move systemically only on the F8-culture filtrate pretreated healthy-looking plants. Tracking the expression of phytohormone-mediated immune maker genes revealed that F8-culture filtrate mainly induced salicylic acid-mediated plant immunity. Furthermore, callose depositions and the expression of the pathogen-induced callose synthase gene, POWDERY MILDEW RESISTANT 4 were only strongly induced by TYLCTHV on tomato pretreated with F8-culture filtrate. This study provides an effective way to induce tomato resistance against TYLCTHV.
Bananas lie among the world’s most important cash and staple crops but are threatened by various devastating pathogens. The phytohormone salicylic acid (SA) plays a key role in the regulation of plant immune response. Tracking the expression of SA-responsive marker genes under pathogen infection is important in pathogenesis elucidation. However, the common SA-responsive marker genes are not consistently induced in different banana cultivars or different organs. Here, we conducted transcriptome analysis for SA response of a banana cultivar, ‘Pei-Chiao’ (Cavendish, AAA genome), and identified three genes, MaWRKY40, MaWRKY70, and Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (MaDLO1) that are robustly induced upon SA treatment in both the leaves and roots. Consistent induction of these three genes by SA treatment was also detected in both the leaves and roots of bananas belonging to different genome types such as ‘Tai-Chiao No. 7’ (Cavendish, AAA genome), ‘Pisang Awak’ (ABB genome), and ‘Lady Finger’ (AA genome). Furthermore, the biotrophic pathogen cucumber mosaic virus elicited the expression of MaWRKY40 and MaDLO1 in infected-leaves of susceptible cultivars. The hemi-biotrophic fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) also consistently induced the expression of MaWRKY40 and MaDLO1 in the infected-roots of the Foc TR4-resistant cultivar. These results indicate that MaWRKY40 and MaDLO1 can serve as reliable SA-responsive marker genes for the study of plant immunity in banana. Revealing SA-responsive marker genes provides a stepping-stone for further studies in banana resistance to pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.