A probabilistic Boolean network (PBN) is well known as one of the mathematical models of gene regulatory networks. In a Boolean network, expression of a gene is approximated by a binary value, and its time evolution is expressed by Boolean functions. In a PBN, a Boolean function is probabilistically chosen from candidates of Boolean functions. One of the authors has proposed a method to construct a PBN from imperfect information. However, there is a weakness that the number of candidates of Boolean functions may be redundant. In this paper, this construction method is improved to efficiently utilize given information. To derive Boolean functions and those selection probabilities, the linear programming problem is solved. Here, we introduce the objective function to reduce the number of candidates. The proposed method is demonstrated by a numerical example.
A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.