Surface current velocities of mesoscale eddies have a unique annular structure, which can inevitably influence surface wave properties and energy distribution. Sensitivity experiments of ideal mesoscale eddies on waves were carried out by the Simulating WAves Nearshore (SWAN) wave model to investigate these influences. In addition, China–France Oceanography SATellite Surface Wave Investigation and Monitoring (CFOSAT-SWIM) observational data of a large warm-cored eddy in the South China Sea (SCS) during the period of October–November 2019 were used to validate the influence of mesoscale eddies on waves. The results illustrated that mesoscale eddies can alter wave properties (wave height, period, and steepness) by 20–30%. Moreover, wave direction could also be modified by 30°–40°. The current effect on waves (CEW) was more noticeable with strong currents and weak winds, and was governed by wave age and the ratio of wave group velocity to current velocity. Wave spectra clearly indicated that current-induced variability in wave energy distribution happens on a spatial scale of 5–90 km (i.e., the sub- and mesoscales). Through comparing the difference of wave energy on both sides of an eddy perpendicular to the wave propagation direction in an eddy, a simple way to trace the footprints of waves on eddies was devised.
Atmospheric cold front-generated waves play an important role in the air–sea interaction and coastal water and sediment transports. In-situ observations from two offshore stations are used to investigate variations of directional waves in the coastal Louisiana. Hourly time series of significant wave height and peak wave period are examined for data from 2004, except for the summer time between May and August, when cold fronts are infrequent and weak. The intra-seasonal scale variations in the wavefield are significantly affected by the atmospheric cold frontal events. The wave fields and directional wave spectra induced by four selected cold front passages over the coastal Louisiana are discussed. It is found that significant wave height generated by cold fronts coming from the west change more quickly than that by other passing cold fronts. The peak wave direction rotates clockwise during the cold front events. The variability of the directional wave spectrum shows that the largest spectral density is distributed at low frequency in the postfrontal phase associated with migrating cyclones (MC storms) and arctic surges (AS storms).
A river island is a shaped sediment accumulation body with its top above the water’s surface in crooked or branching streams. In this paper, four river islands in Yangzhong City in the lower reaches of the Yangtze River were studied. The spatio-temporal evolution information of the islands was quantitatively extracted using the threshold value method, binarization model, and cluster analysis, based on Thematic Mapper (TM) and Enhanced Thematic Mapper+ (ETM+) images of the Landsat satellite series from 1985 to 2015. The variation mechanism and influencing factors were analyzed using an unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM) hydrodynamic numerical simulation, as well as the water-sediment data measured by hydrological stations. The annual average total area of these islands was 251,224.46 m2 during 1985–2015, and the total area first increased during 1985–2000 and decreased later during 2000–2015. Generally, the total area increased during these 30 years. Taipingzhou island had the largest area and the biggest changing rate, Xishadao island had the smallest area, and Zhongxinsha island had the smallest changing rate. The river islands’ area change was influenced by river runoff, sediment discharge, and precipitation, and sediment discharge proved to be the most significant natural factor in island evolution. River island evolution was also found to be affected by both runoff and oceanic tide. The difference in flow-field caused silting up in the Leigongdao Island and the head of Taipingzhou Island, and a serious reduction in the middle and tail of Taipingzhou Island. The method used in this paper has good applicability to river islands in other rivers around the world.
Satellite altimeters are valuable tools for exploring and monitoring the state of the ocean. It is one of the most effective methods for global observations of ocean surface parameters such as sea surface height anomalies (SSHA) and sea surface currents (SSC) fields (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.