In the process of promoting the strategy of a healthy China, the built environment, as a carrier of human activities, can effectively influence the health level of residents in the light of its functional types. Based on the POI data of four main urban areas in Lanzhou, this paper classifies the built environment in terms of function into four types. The association between different types of built environments and the prevalence of hypertension was investigated by using the community as the study scale, and activity frequency, air pollution and green space were used as mediating variables to investigate whether they could mediate the relationship between built environments and hypertension. The results indicate that communities with a high concentration of commercial service facilities, road and traffic facilities and industrial facilities have a relatively high prevalence of hypertension. By determining the direct, indirect and overall effects of different functional types of built environment on the prevalence of hypertension, it was learned that the construction of public management and service facilities can effectively mitigate the negative effects of hypertension in the surrounding residents. The results of the study contribute to the rational planning of the structure of the built environment, which is beneficial for optimizing the urban structure and preventing and controlling chronic diseases such as hypertension.
Taking Xigu District of Lanzhou City as an example, this paper systematically analyzes the spatio-temporal distribution characteristics of patients with chronic non-communicable diseases (NCD) and compares the differences between heating period and non-heating period. Furthermore, the impact paths of natural environmental factors and built-up environmental factors on NCD are probed with the help of the geographic detector. The results are as follows: In time, the incidence of NCD in Xigu district fluctuated from 2012 to 2019. In space, there was an overall declining trend in high incidence rate from the central area to the surrounding areas, among which Xigucheng street was the high-risk area. The incidence of NCD in heating period was higher than that of in non-heating period, and the number of H-H cluster areas was witnessed an obviously increasing growth in Sijiqing Street. There are significant differences in the explanatory power of different factors (if any) for NCD. The explanatory power of each index in Xigu District is as follows: Facility > SO2 > NO2 > PM2.5 > food > Beverage Service > Green Facilities > Traffic Regulations > medical facilities. The interaction between plant facilities and SO2 has the strongest effect on NCD. Except for the negative correlation between greening and medical facilities and the incidence of NCD, all the influencing factors were positively correlated with NCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.