Calcareous sand is a special soil formed by the accumulation of carbonate fragments. Its compressibility is caused by a high void ratio and breakable particles. Because of its high carbonate content and weak cementation, its load-bearing capacity is limited. In this study, the optimal stimulation solution was obtained with response surface methodology. Then, the effect of reinforcing calcareous sand was analysed with unconfined compressive strength (UCS) tests, calcium carbonate content tests, microscopy and microbial community analyses. The components and concentrations of the optimal stimulation solution were as follows: sodium acetate (38.00 mM), ammonium chloride (124.24 mM), yeast extract (0.46 g/L), urea (333 mM), and nickel chloride (0.01 mM), and the pH was 8.75. After the calcareous sand was treated with the optimal stimulation scheme, the urease activity was 6.1891 mM urea/min, the calcium carbonate production was 8.40%, and the UCS was 770 kPa, which constituted increases of 71.41%, 35.40%, and 83.33%, respectively, compared with the initial scheme. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses showed that calcium carbonate crystals were formed between the particles of the calcareous sand after the reaction, and the calcium carbonate crystals were mainly calcite. Urease-producing microorganisms became the dominant species in calcareous sand after treatment. This study showed that biostimulation-induced mineralization is feasible for reinforcing calcareous sand.
With societal development, the growing scale of engineering construction, and the increase in environmental protection requirements, the necessity of engineering waste mud disposal is becoming increasingly prominent. In this study, microbially induced struvite precipitation (MISP) was introduced to treat engineering waste mud. The study mainly focused on: i) the optimal mineralization scheme for microbially induced struvite precipitation, ii) the feasibility of the process and the effect of reaction parameters on treating engineering waste mud with microbially induced struvite precipitation, and iii) the mechanism of microbially induced struvite precipitation in treating engineering waste mud. The results showed that the waste mud could be well treated with 8.36×106 cell⋅mL−1 bacteria, 10 mM urea, 20 mM phosphate buffer, and 25 mM MgCl2 at pH 7. The kaolin suspension could be effectively flocculated. The flocculation rate reached approximately 87.2% under the optimum mineralization conditions. The flocculation effect was mainly affected by the concentrations of reactants and heavy metals and the suspension pH. The X-ray diffraction (XRD) patterns showed a strong struvite (MAP) diffraction peak. Scanning electron microscopy (SEM) images indicated that under the optimal mineralization conditions, the crystals were large and showed prismatic shapes tilted at both ends with adhered kaolin particles. In summary, this manuscript provides an effective way to treat engineering waste mud, and the findings should have a positive effect on enhancing soil fertility and preventing secondary pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.