Colorectal cancer (CRC) is the third leading cause of cancer-related deaths and a major health problem. High mobility group box 3 (HMGB3), a member of the high-mobility group box (HMGB) family, was reported to be over-expressed in gastric carcinoma and bladder cancer. However, the function of HMGB3 in CRC remains unclear. Here, we found that HMGB3 was up-regulated in CRC at both mRNA and protein levels. qRT-PCR results showed that high expression of HMGB3 had positive correlation with serosal invasion, lymph metastasis, and tumor–node–metastasis (TNM) stage in CRC patient. Functional experiments showed that HMGB3 can promote CRC cells proliferation and migration in vitro. Moreover, we found HMGB3 can active WNT/β-catenin pathway to increase the expression level of c-Myc and MMP7. These results may be the reason for HMGB3 oncogene role in CRC. In summary, our data indicated that HMGB3 may serve as an oncoprotein and could be used as a potential prognostic marker in CRC.
Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/β-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.