The 1,2,3-triazole ring system can be easily obtained by widely used copper-catalyzed click reaction of azides with alkynes. 1,2,3-triazole exhibits myriad of biological activities, including antibacterial antimalarial, and antiviral activities. We herein reported the synthesis of quinoline-based [1,2,3]-triazole hybrid derivative via Cu(I)-catalyzed click reaction of 4-azido-7-chloroquinoline with alkyne derivative of hydroxybenzotriazole (HOBt). The compound was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), correlated spectroscopy (1H-1H-COSY), heteronuclear single quantum coherence (HSQC) and distortionless enhancement by polarization transfer (DEPT-135 and DEPT-90) NMR, ultraviolet (UV) and Fourier-transform infrared (FTIR) spectroscopies, and high-resolution mass spectrometry (HRMS). Computational studies were enrolled to predict the interaction of the synthesized compound with acetylcholinesterase, a target of primary relevance for developing new therapeutic options to counteract neurodegeneration. Moreover, the drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.
The 1,2,3-triazole ring system can be easily obtained by copper-catalyzed click reaction of azides with alkynes. 1,2,3-Triazole exhibits a myriad of biological activities, including antimalarial, antibacterial, and antiviral activities. We herein reported the synthesis of quinoline-based [1,2,3]-triazole hybrid via Cu(I)-catalyzed click reaction of 4-azido-7-chloroquinoline with alkyne derivative of 2-bromobenzaldehyde. The compound was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), ultraviolet (UV), and high-resolution mass spectroscopies (HRMS). This compound was screened in vitro against two different normal cell lines. Preliminary studies attempted to evaluate its interaction with Delta RBD of spike protein of SARS-CoV-2 by bio-layer interferometry. Finally, the drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.
1,2,3-triazole pharmacophore is a widely recognized motif used for a variety of applications, including drug discovery, chemical biology, and materials science. We herein report the synthesis of a derivative of azidothymidine (AZT), which was combined with the 7-chloro quinoline scaffold through a 1,4-disubstituted 1,2,3-triazole. The chemical structure of the new molecule was fully characterized by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC) distortionless enhancement by polarization transfer (DEPT), correlation spectroscopy (1H-1H-COSY), ultraviolet (UV) spectroscopy, and high-resolution mass spectrometry (HRMS). Computational studies were used to predict the interaction of the synthesized compound with HIV reverse transcriptase, a target of relevance for developing new therapeutics against AIDS. The drug-likeness of the compound was also investigated by computing the physico-chemical properties that are important for the pharmacokinetic profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.