Lesion mimic mutants (LMMs) are ideal materials for studying programmed cell death and defense response in plants. Here we report investigations on two LMMs (msl-1 and msl-2) from the indica rice cultivar JG30 treated by ethyl methyl sulfone. Both of the mutants showed similar mosaic spot lesions at seedling stage, but they displayed different phenotypes along with development of the plants. At tillering stage, larger orange spots appeared on leaves of msl-2, while only small reddish-brown spots exhibit on leaves of msl-1. At heading stage, the msl-2 plants were completely dead, while the msl-1 plants were still alive even if showed apparent premature senility. For both the mutants, the mosaic spot lesion formation was induced by light; DAB and trypan blue staining showed a large amount of hydrogen peroxide accumulated at the lesion sites, accompanied by a large number of cell death. Consequently, reactive oxygen species were enriched in leaves of the mutants; SOD and CAT activities in the scavenging enzyme system were decreased compared with the wild type. In addition, degraded chloroplasts, decreased photosynthetic pigment content, down-regulated expression of genes associated with chloroplast synthesis/photosynthesis and up-regulated expression of genes related to senescence were detected in the mutants, but the abnormality of msl-2 was more serious than that of msl-1 in general. Genetic analysis and map-based cloning revealed that the lesion mimic and premature senescence traits of both the mutants were controlled by recessive mutated alleles of the SL (Sekiguchi lesion) gene, which encodes the CYP71P1 protein belonging to cytochrome P450 monooxygenase family. The difference of mutation sites and mutation types (SNP-caused single amino acid change and SNP-caused early termination of translation) led to the different phenotypes in severity between msl-1 and msl-2. Taken together, this work revealed that the CYP71P1 is involved in regulation of both premature senescence and cell death in rice, and its different mutation sites and mutation types could cause different phenotypes in terms of severity.
Transmembrane kinases (TMKs) play important roles in plant growth and signaling cascades of phytohormones. However, its function in the regulation of early leaf senescence (ELS) of plants remains unknown. Here, we report the molecular cloning and functional characterization of the WATER-SOAKED SPOT1 gene which encodes a protein belongs to the TMK family and controls chloroplast development and leaf senescence in rice (Oryza sativa L.). The water-soaked spot1 (oswss1) mutant displays water-soaked spots which subsequently developed into necrotic symptoms at the tillering stage. Moreover, oswss1 exhibits slightly rolled leaves with irregular epidermal cells, decreased chlorophyll contents, and defective stomata and chloroplasts as compared with the wild type. Map-based cloning revealed that OsWSS1 encodes transmembrane kinase TMK1. Genetic complementary experiments verified that a Leu396Pro amino acid substitution, residing in the highly conserved region of leucine-rich repeat (LRR) domain, was responsible for the phenotypes of oswss1. OsWSS1 was constitutively expressed in all tissues and its encoded protein is localized to the plasma membrane. Mutation of OsWSS1 led to hyper-accumulation of reactive oxygen species (ROS), more severe DNA fragmentation, and cell death than that of the wild-type control. In addition, we found that the expression of senescence-associated genes (SAGs) was significantly higher, while the expression of genes associated with chloroplast development and photosynthesis was significantly downregulated in oswss1 as compared with the wild type. Taken together, our results demonstrated that OsWSS1, a member of TMKs, plays a vital role in the regulation of ROS homeostasis, chloroplast development, and leaf senescence in rice.
SummaryPlant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor‐like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map‐based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G‐type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self‐associate, mainly mediated by the plasminogen‐apple‐nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self‐interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat‐tolerance, and resistance to bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.