Rice false smut caused by Ustilaginoidea virens is currently one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from SNP-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. The groups Ⅰ and Ⅵ were the largest including 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. AMOVA showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup. The UPGMA dendrogram and population structure revealed that the genetic composition of isolates collected from ST (Santai), NC (Nanchong), YC (Yongchuan), and WS (Wansheng) dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.
Introduction Nematodes of the Trichuris genus are commonly reported parasites that can cause trichuriasis in many animals, which leads to inflammation, intestinal bleeding and reductions of productivity in livestock. Knowledge of the prevalence of Trichuris infestation in the Tianshan ovine population and of the nematode species parasitising the population is not exhaustive, and this study aimed to expand the knowledge. Material and Methods A total of 1,216 sheep slaughtered in five pasture areas in the Tianshan Mountains of Xinjiang were investigated and a phylogenetic analysis based on the mitochondrial cox1 gene was performed to clarify the genetic relationships of the various Trichuris species. Results Sheep totalling 1,047 were infected with Trichuris spp. establishing the rate at 86.1%. Using a morphological protocol, six documented and one undefined species were identified, namely T. gazellae, T. lani, T. ovina, T. longispiculus, T. concolor, T. discolor and Trichuris sp. Among them, T. gazellae and T. lani were the dominant species, accounting for 34.5% and 31.0% of Trichuris spp., respectively. Phylogenetic analysis divided the detected species of Trichuris spp. into two genetic clades (clade I and clade II). The six documented species that can infect sheep and the undefined species were clustered into clade I, with inter- and intra-species genetic diversity apparent. Conclusion This survey described in detail the morphological characteristics of six known and one undefined species of Trichuris, which not only enriched the taxonomic information on record regarding Trichuris spp., but also provided valuable epidemiological data for the prevention and control of trichuriasis in sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.