In recent years, high-resolution remote sensing semantic segmentation based on data fusion has gradually become a research focus in the field of land classification, which is an indispensable task of a smart city. However, the existing feature fusion methods with bottom-up structures can achieve limited fusion results. Alternatively, various auxiliary fusion modules significantly increase the complexity of the models and make the training process intolerably expensive. In this paper, we propose a new lightweight model called top-down pyramid fusion network (TdPFNet) including a multi-source feature extractor, a top-down pyramid fusion module and a decoder. It can deeply fuse features from different sources in a top-down structure using high-level semantic knowledge guiding the fusion of low-level texture information. Digital surface model (DSM) data and open street map (OSM) data are used as auxiliary inputs to the Potsdam dataset for the proposed model evaluation. Experimental results show that the network proposed in this paper not only notably improves the segmentation accuracy, but also reduces the complexity of the multi-source semantic segmentation model.
Flow maps have long been servicing people in exploring movement by representing origin-destination data (OD data). Due to recent developments in data collecting techniques the amount of movement data is increasing dramatically. With such huge amounts of data, visual clutter in flow maps is becoming a challenge. This paper revisits flow maps, provides an overview of the characteristics of OD data and proposes a classification system for flow maps.For dealing with problems of visual clutter, 3D flow maps are proposed as potential alternative to 2D flow maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.