To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2 0 -deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P ¼ 0.0146, v 2 test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.
Background
Given the high mortality rate and unclear pathogenesis for liver cancer, investigation of its molecular mechanisms is essential. We focused on the long non-coding RNA (lncRNA) MIR4435-2HG, which was recently reported to be oncogenic in lung cancer and the microRNA miRNA-487a, which has been reported to be oncogenic in hepatocellular carcinoma (HCC). Our aim was to determine if the former has a role in HCC, and to further validate the role of the latter.
Methods
Samples from 64 patients with HCC were taken at The Third Affiliated Hospital of Sun Yat-Sen University. Cell transfection and PCR were applied.
Results
We found that MIR4435-2HG and miRNA-487a were upregulated in tumor tissues compared to adjacent healthy tissues from HCC patients. The expression of MIR4435-2HG was significantly affected by tumor size but not by tumor metastasis. Correlation analysis showed that MIR4435-2HG and miRNA-487a were positively correlated in both the tumor tissues and adjacent healthy tissues from HCC patients. Overexpression of MIR4435-2HG led to upregulation of miRNA-487a in the cells of HCC cell lines, while overexpression of miRNA-487a did not significantly affect MIR4435-2HG. Overexpression of MIR4435-2HG and miRNA-487a promoted the proliferation of cells of HCC cell lines, and miRNA-487a knockdown partially attenuated the enhancing effects of MIR4435-2HG overexpression on cancer cell proliferation.
Conclusion
MIR4435-2HG is upregulated in HCC and promotes cancer cell proliferation possibly by upregulating miRNA-487a.
Cancer-associated fibroblasts (CAFs) play crucial roles in enhancing cell survival, proliferation, invasion, and metastasis. We previously showed that hepatocellular carcinoma-derived CAFs (H-CAFs) promoted proliferation of hepatocellular carcinoma (HCC) cells. This study aimed to further explore the role of CAFs in HCC epithelial-mesenchymal transition (EMT) and the underlying mechanism. High CAF density was significantly associated with liver cirrhosis, inferior clinicopathologic characteristics, elevated EMT-associated markers, and poorer survival in human HCC. Within HCC cells, EMT was induced after co-culture with H-CAFs. Secretomic analysis showed that IL-6 and HGF were the key EMT-stimulating cytokines secreted by H-CAFs. Proteomic analysis revealed that TG2 was significantly upregulated in HCC cells with EMT phenotypes. Overexpression of TG2 promoted EMT of HCC cells, and knockdown of TG2 remarkably attenuated the H-CAF-induced EMT. Furthermore, during EMT, TG2 expression was enhanced after HCC cells were stimulated by IL-6, but not HGF. Inhibition of the IL-6/STAT3 signaling decreased TG2 expression. The principal TG2 transcription control element and a potential STAT3 binding site were identified using promoter analysis. Hence, H-CAFs facilitates HCC cells EMT mediated by IL-6, which in turn activates IL-6/IL6R/STAT3 axis to promote TG2 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.