Background and Purpose: Gut microbiota dysbiosis induced by acute pancreatitis (AP) exacerbates pancreatic injury and systemic inflammatory responses. The alleviation of gut microbiota dysbiosis through faecal microbiota transplantation (FMT) is considered a potential strategy to reduce tissue damage and inflammation in many clinical disorders. Here, we aim to investigate the effect of gut microbiota and microbiota-derived metabolites on AP and further clarify the mechanisms associated with pancreatic damage and inflammation. Experimental Approach: AP rat and mouse models were established by administration of caerulein or sodium taurocholate in vivo. Pancreatic acinar cells were exposed to caerulein and lipopolysaccharide in vitro to simulate AP. Key Results: Normobiotic FMT alleviated AP-induced gut microbiota dysbiosis and ameliorated the severity of AP, including mitochondrial dysfunction, oxidative damage and inflammation. Normobiotic FMT induced higher levels of NAD + (nicotinamide adenine dinucleotide)-associated metabolites, particularly nicotinamide mononucleotide (NMN). NMN administration mitigated AP-mediated mitochondrial dysfunction, oxidative damage and inflammation by increasing pancreatic NAD + levels. Similarly, overexpression of the NAD + -dependent mitochondrial deacetylase sirtuin 3 (SIRT3) alleviated the severity of AP. Furthermore, SIRT3 deacetylated peroxiredoxin 5 (PRDX5) and enhanced PRDX5 protein expression, thereby promoting its antioxidant and anti-inflammatory activities in AP. Importantly, normobiotic FMTmediated NMN metabolism induced SIRT3-PRDX5 pathway activation during AP. Conclusion and Implications: Gut microbiota-derived NMN alleviates the severity of AP by activating the SIRT3-PRDX5 pathway. Normobiotic FMT could be served as a potential strategy for AP treatment.
Background and Objectives: Acute pancreatitis (AP) is defined as an acute inflammatory disorder of the pancreas and is a common gastrointestinal disease. Since currently used indicators lack specifics and cannot accurately reflect the phase of disease, better diagnostic approaches need to be explored. Fibrinogen-like protein 1 (FGL-1) is a reactant in acute inflammatory diseases and is increased in the plasma of AP patients. In the current study, we aim to investigate the clinical benefits of FGL-1 in predicting the severity of AP and infected pancreatic necrosis (IPN), which can improve the diagnostic efficiency of AP. Materials and Methods: In this study, 63 patients diagnosed with AP from December 2018 to September 2019 were enrolled. Regarding the severity of AP, patients were separated into severe acute pancreatitis (SAP, n = 12) and No-SAP groups (n = 51). On the basis of infective conditions, patients were divided into IPN (n = 9) and No-IPN (n = 54) groups. The demographic data (sex and age) and blood parameters (WBC, HCT, glucose, calcium, FIB, APTT, PCT, CRP, and FGL-1) were retrospectively analyzed. Results: The plasma FGL-1 levels were increased in both SAP (p < 0.01) and IPN (p < 0.05) subgroups compared to the healthy control group. Multivariate analysis showed that elevated plasma FGL-1 (p < 0.01) and PCT levels (p < 0.05) within 72 h after the onset of AP were positively correlated with the severity of AP, while increased plasma FGL-1 (p < 0.01) and CRP (p < 0.05) levels were positively correlated with the occurrence of IPN. The combination of FGL-1 and PCT showed superiority to both individual markers in SAP prediction. However, the combination of FGL-1 and CRP showed no diagnostic advantage over CRP in IPN prediction. Conclusions: Plasma FGL-1 within 72 h after the onset could be used for the stratification of AP and its infectious complications. The combination of PCT and FGL-1 presents an enormous advantage for the early identification of SAP.
Acute pancreatitis (AP) is a complicated disease with rising incidence over the years. Twenty percent of AP will develop into acute necrotizing pancreatitis (ANP). Interventions for ANP have evolved from traditional open surgery to minimally invasive step-up approaches. Infected pancreatic necrosis (IPN) is the most serious event of ANP and associated with extremely poor prognosis. The contrast-enhanced computed tomography(CECT)-based classification of IPN describes various types of IPN and will help to carry out surgical interventions for each subtype. Nevertheless, many challenges are still remaining during the treatment of ANP. Including the balance between endoscopic and surgical approaches, and the selection of optimal timing of surgical intervention for infected necrosis. In nowadays treatment scenario of ANP, the necessity for open surgery remains to be debated. Despite of the development of advanced interventional techniques, postoperative residual infection (PRI) remains thorny, and effective prevention and treatment of PRI is of significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.