The back-diffusion of inactive gases severely inhibits the hydrogen (H2) delivery rate of the close-end operated hydrogen-based membrane biofilm reactor (H2-based MBfR). Nevertheless, less is known about the response of microbial communities in H2-based MBfR to the impact of the gases’ back-diffusion. In this research, the denitrification performance and microbial dynamics were studied in a H2-based MBfR operated at close-end mode with a fixed H2 pressure of 0.04 MPa and fed with nitrate (NO3−) containing influent. Results of single-factor and microsensor measurement experiments indicate that the H2 availability was the decisive factor that limits NO3− removal at the influent NO3− concentration of 30 mg N/L. High-throughput sequencing results revealed that (1) the increase of NO3− loading from 10 to 20–30 mg N/L resulted in the shift of dominant functional bacteria from Dechloromonas to Hydrogenophaga in the biofilm; (2) excessive NO3− loading led to the declined relative abundance of Hydrogenophaga and basic metabolic pathways as well as counts of most denitrifying enzyme genes; and (3) in most cases, the decreased quantity of N metabolism-related functional bacteria and genes with increasing distance from the H2 supply end corroborates that the microbial community structure in H2-based MBfR was significantly impacted by the gases’ back-diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.