Background: Epicardial fat tissue (EFT) is the visceral fat distributed along the coronary arteries between the pericardium and the myocardium. Increases in EFT are closely related to the occurrence of diabetes mellitus (DM) and cardiovascular disease. To further understand the link between EFT and DM, we conducted a meta-analysis of the relevant literature. Methods: We systematically searched electronic databases for studies on EFT performed in DM patients and published up to 30 September 2018. We included data on EFT in a DM patient group and a non-DM control group. We then assessed the effect of DM on EFT by meta-analysis and trial sequential analysis (TSA). All statistical analyses were performed using Stata 12.0 and TSA software. Results: A total of 13 studies (n = 1102 patients) were included in the final analysis. Compared with the control group, DM patients had significantly higher EFT (SMD: 1.23; 95% CI 0.98, 1.48; P = 0.000; TSA-adjusted 95% CI 0.91, 2.13; P < 0.0001). The TSA indicated that the available samples were sufficient and confirmed that firm evidence was reached. According to the regression analysis and subgroup analyses, DM typing, EFT ultrasound measurements, total cholesterol (TC) and triglyceride (TG) levels were confounding factors that significantly affected our results. Conclusions: Our meta-analysis suggests that the amount of EFT is significantly higher in DM patients than in non-DM patients.
Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.
A practical and scalable single electron transfer reduction mediated by sodium dispersions has been developed for the reduction and reductive deuteration of tertiary amides. The chemoselectivity of this method highly depends on the nature of the proton donor. The challenging reduction via C-N bond cleavage has been achieved using Na/EtOH, affording alcohol products, while the use of Na/NaOH/HO leads to the formation of amines via selective C-O scission. Sodium dispersions with high specific surface areas are crucial to obtain high yields and good chemoselectivity. This new method tolerates a range of tertiary amides. Moreover, the corresponding reductive deuterations mediated by Na/EtOD- d and Na/NaOH/DO afford useful α,α-dideuterio alcohols and α,α-dideuterio amines with an excellent deuterium content.
A transition-metal-free single electron transfer reaction has been developed for the synthesis of [D]-alkenes from terminal alkynes using sodium dispersions as the electron donor and EtOD- d as the deuterium source. Both reagents are cost-effective and bench-stable. This practical method exhibits remarkable terminal alkyne selectivity and exclusive alkene selectivity. Excellent deuterium incorporations and yields were achieved across a broad range of terminal alkynes without olefin isomerization. Of note, this reaction is highly solvent dependent. n-Hexane provides unique enhancement to this reductive deuteration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.