The appearance of repetitive transients in a vibration signal is one typical feature of faulty rolling element bearings. However, accurate extraction of these fault-related characteristic components has always been a challenging task, especially when there is interference from large amplitude impulsive noises. A frequency domain multipoint kurtosis (FDMK)-based fault diagnosis method is proposed in this paper. The multipoint kurtosis is redefined in the frequency domain and the computational accuracy is improved. An envelope autocorrelation function is also presented to estimate the fault characteristic frequency, which is used to set the frequency hunting zone of the FDMK. Then, the FDMK, instead of kurtosis, is utilized to generate a fast kurtogram and only the optimal band with maximum FDMK value is selected for envelope analysis. Negative interference from both large amplitude impulsive noise and shaft rotational speed related harmonic components are therefore greatly reduced. The analysis results of simulation and experimental data verify the capability and feasibility of this FDMK-based method
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.