Abstract. Since very few oocytes grow completely in vivo, in vitro growth (IVG) of ovarian oocytes may provide a new source of functional oocytes. The long-term effects of in vitro maturation (IVM) of oocytes and in vitro culture of fertilized eggs have been reported; however, the effects of IVG of oocytes are unknown. Here in, we report the long-term effects of IVG of oocytes. Ovaries from 1-dayold mice containing non-growing oocytes were cultured for 10 days; the isolated follicles were then cultured for 11 days. Secondary follicles from 10-day-old mice were also cultured for 11 days. The nuclei of oocytes collected from the IVG and Graafiais follicles of adult mice were transferred to enucleated oocytes grown in vivo, respectively. Developmental competence was examined following IVM of the reconstituted oocytes. Chronologically, oocytes of 1-day-old, 10-day-old and adult mice were cultured for 22, 12 and 1 day(s). The result showed that the reconstituted eggs developed into pups at high rates after nuclear transfer and in vitro fertilization (IVF) in all the experimental groups (29-45%). However, the pups from reconstituted eggs containing the nuclei of 22-day cultured oocytes were heavier than the control pups (P<0.05). We concluded that long-term culture of oocytes did not affect their nuclear ability to develop to term; however, fetal growth was affected by the culture duration or culture conditions during the initial phase of follicular growth.
The effect of draw ratio, molecular weight, and sea-island conjugated spinning with a polystyrene component on the fiber structure development of PET during laser drawing was analyzed by in-situ measurements with a 0.1 ms time resolution using an ultra-high luminance X-ray beam generated from a synchrotron equipped with an undulator. The fiber temperature increased from 120 o C to 160-220 o C during the structure development process. By drawing the higher molecular weight PET to a higher draw ratio, a larger amount of fibrillar smectic mesophase formed just after the onset of necking, and a more highly oriented crystal formed after the extinction of the smectic mesophase. Accordingly, fibers with higher strength and higher thermal shrinkage stress were obtained. On the other hand, by conjugated spinning with a PS component, the fiber temperature increased along with an increase in the drawing stress, but the stress applied to the PET component should have decreased.The amount of smectic mesophase formed by the conjugated-spinning process was drastically decreased, and no crystallization induction time was observed, unlike the other cases. Crystallization, particularly the growth of a lamellar crystal, was also promoted. Moreover, a higher Young's modulus, a higher yield stress, and a higher shrinkage stress were observed for the conjugated-spun and drawn fibers. Therefore, the fibrillar smectic mesophase seems to block the formation of the lamellar crystal. Furthermore, the resultant fibrillar structure tends to result in a higher strength, but a relatively lower modulus and yield strength of the fiber.
The effects of spinning conditions on fiber properties are not well explained by the fiber structures because the birefringence, crystallinity, and SAXS patterns are often similar. In this study, the effects on the fiber structure development of polyethylene terephthalate after necking was analyzed by simultaneous WAXD/SAXS measurements. An X-shaped SAXS pattern was observed for all fibers drawn at the minimum draw ratio. In contrast, by drawing under a drawing stress of 100 MPa, the strong diffraction of the smectic phase and an obviously larger long period less than 1 ms after necking were observed for fibers spun at 500-1500 m/min, while almost no smectic phase was observed for fibers spun at 2000 m/min. A higher crystallization rate and clear draw ratio dependence of crystallization rate were also observed for the fiber spun at 2000 m/min. The clear differences in structure development can explain their differences in tensile strength and thermal shrinkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.