The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to megaelectron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Magnetospheric extremely low frequency/very low frequency (ELF/VLF) waves are plasma waves emitted from high-energy electrons in the magnetosphere. These waves have received much attention, as they contribute to the acceleration and loss of relativistic electrons in the radiation belts through wave-particle interactions. The longitudinal extent of ELF/VLF waves has not been well-understood, although the extent is important in quantitative evaluation of relativistic electron variations. In this study, we analyzed data from continuous ground-based simultaneous observations of ELF/VLF waves over a 2-month period in November and December of 2017, using six loop antennas located at roughly equal intervals around the north geomagnetic pole at ∼ 60 • magnetic latitudes. We estimated the longitudinal extent of magnetospheric ELF/VLF waves based on their occurrence rate. Our results showed that the ELF/VLF wave occurrence rate differed by twofold to threefold, depending on the longitudes of the observation sites. We explain this difference in terms of longitudinal differences in the ionosphere's magnetic field intensity, possibly due to the electron loss that occurs during the bounce motion at longitudes of small magnetic field intensity. Based on our statistical analysis, we estimated the typical longitudinal extent of ELF/VLF waves as ∼ 76 • . Time series analysis results showed that the large longitudinal extent of the ELF/VLF waves occurs frequently during the main phase of geomagnetic storms and is also associated with substorms represented by the auroral electrojet index.Hiss emissions are categorized as continuous electromagnetic waves with broadband and non-structured features (Hayakawa et al., 1986). The generation mechanism has been considered to be a mixture of propagating and reflecting chorus waves in the magnetosphere (e.g.
Relationships between microhabitat variables; understory light conditions in summer and winter, altitude, slope inclination and topographic categories (valley, ridge, and slope) and the distribution of Aucuba japonica Thunb. (Cornaceae), a common understory shrub species in Japan were examined using non-contagious 66, 20 · 20 m 2 quadrats. The Morishita's I d suggested that A. japonica distributions were strongly heterogeneous among the quadrats. Therefore positive spatial autocorrelation of A. japonica at a within-quadrat level ( £ 20 m) was obvious. Moran's I statistics showed a significant positive spatial autocorrelation in A. japonica abundance within the distance shorter than 60 m. But the partial Mantel tests suggested that the mass effect from neighboring quadrats would little explain A. japonica abundance in a quadrat. The partial Mantel tests also clearly showed that A. japonica distributions were strongly structured by topography and understory light conditions. Using Monte Carlo randomization tests, we found that A. japonica was aggregately distributed in quadrats in valley which were covered by deciduous canopies. Better understory light conditions in winter together with valley edaphic conditions may increase the abundance of A. japonica there. It is concluded that habitat niche specialization is important in structuring distribution of A. japonica in this forest community.
Magnetospheric Extremely Low‐Frequency/Very Low‐Frequency (ELF/VLF) waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave‐particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave‐particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground‐based stations at subauroral latitudes, Exploration of energization and Radiation in Geospace and RBSP satellites, POES/MetOp satellites, and the RAM‐SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 h. Ground observations tend not to observe ELF/VLF waves in the post‐midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post‐midnight sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.