Six new dibenzo-α-pyrones, rhizopycnolides A (1) and B (2) and rhizopycnins A-D (3-6), together with eight known congeners (7-14), were isolated from the endophytic fungus Rhizopycnis vagum Nitaf22 obtained from Nicotiana tabacum. The structures of the new compounds were unambiguously elucidated using NMR, HRESIMS, TDDFT ECD calculation, and X-ray crystallography data. Rhizopycnolides A (1) and B (2) feature an uncommon γ-butyrolactone-fused dibenzo-α-pyrone tetracyclic skeleton (6/6/6/5), while rhizopycnin B (4) was the first amino group containing dibenzo-α-pyrone. Rhizopycnolides A (1) and B (2) are proposed to be biosynthesized from polyketide and tricarboxylic acid cycle pathways. The isolated compounds were tested for their antibacterial, antifungal, and cytotoxic activities. Among them, rhizopycnolide A (1), rhizopycnins C (5) and D (6), TMC-264 (8), penicilliumolide D (11), and alternariol (12) were active against the tested pathogenic bacteria Agrobacterium tumefaciens, Bacillus subtilis, Pseudomonas lachrymans, Ralstonia solanacearum, Staphylococcus hemolyticus, and Xanthomonas vesicatoria with MIC values in the range 25-100 μg/mL. Rhizopycnin D (6) and TMC-264 (8) strongly inhibited the spore germination of Magnaporthe oryzae with IC50 values of 9.9 and 12.0 μg/mL, respectively. TMC-264 (8) showed potent cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, NCI-H1650, and A2780) with IC50 values of 3.2-7.8 μM.
Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid "Neva" of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L) was obtained by adding resin DM-301 at 4.38% (g/mL) to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L), and was achieved by adding DM-301 resin at 4.38% (w/v) in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for OPEN ACCESSMolecules 2014, 19 14222 enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.