Occludin is an integral membrane protein localizing at tight junctions in epithelial and endothelial cells. Occludin from confluent culture MDCK I cells resolved as several (>10) bands between 62 and 82 kD in SDS-PAGE, of which two or three bands of the lowest M r were predominant. Among these bands, the lower predominant bands were essentially extracted with 1% NP-40, whereas the other higher M r bands were selectively recovered in the NP-40–insoluble fraction. Alkaline phosphatase treatment converged these bands of occludin both in NP-40–soluble and -insoluble fractions into the lowest M r band, and phosphoamino acid analyses identified phosphoserine (and phosphothreonine weakly) in the higher M r bands of occludin. These findings indicated that phosphorylation causes an upward shift of occludin bands and that highly phosphorylated occludin resists NP-40 extraction. When cells were grown in low Ca medium, almost all occludin was NP-40 soluble. Switching from low to normal Ca medium increased the amount of NP-40–insoluble occludin within 10 min, followed by gradual upward shift of bands. This insolubilization and the band shift correlated temporally with tight junction formation detected by immunofluorescence microscopy. Furthermore, we found that the anti–chicken occludin mAb, Oc-3, did not recognize the predominant lower M r bands of occludin (non- or less phosphorylated form) but was specific to the higher M r bands (phosphorylated form) on immunoblotting. Immunofluorescence microscopy revealed that this mAb mainly stained the tight junction proper of intestinal epithelial cells, whereas other anti-occludin mAbs, which can recognize the predominant lower M r bands, labeled their basolateral membranes (and the cytoplasm) as well as tight junctions. Therefore, we conclude that non- or less phosphorylated occludin is distributed on the basolateral membranes and that highly phosphorylated occludin is selectively concentrated at tight juctions as the NP-40–insoluble form. These findings suggest that the phosphorylation of occludin is a key step in tight junction assembly.
Apoptosis is a distinct form of cell death, which requires energy. Here, we made real-time continuous measurements of the cytosolic ATP level throughout the apoptotic process in intact HeLa, PC12 and U937 cells transfected with the firefly luciferase gene. Apoptotic stimuli (staurosporine (STS), tumor necrosis factor a (TNFa), etoposide) induced significant elevation of the cytosolic ATP level. The cytosolic ATP level remained at a higher level than in the control for up to 6 h during which activation of caspase-3 and internucleosomal DNA fragmentation took place. When the STS-induced ATP response was abolished by glucose deprivation-induced inhibition of glycolysis, both caspase activation and DNA laddering were completely inhibited. Annexin V-binding induced by STS or TNFa was largely suppressed by glycolysis inhibition. Thus, it is suggested that the cells die with increased cytosolic ATP, and elevation of cytosolic ATP level is a requisite to the apoptotic cell death process.
Abstract. Occludin has been identified from chick liver as a novel integral membrane protein localizing at tight
Apoptotic and necrotic blebs elicited by H 2 O 2 were compared in terms of dynamics, structure and underlying biochemistry in HeLa cells and Clone 9 cells. Apoptotic blebs appeared in a few minutes and required micromolar peroxide concentrations. Necrotic blebs appeared much later, prior to cell permeabilization, and required millimolar peroxide concentrations. Strikingly, necrotic blebs grew at a constant rate, which was unaffected throughout successive cycles of budding and detachment. At 1 lm diameter, the necks of necrotic and apoptotic blebs were almost identical. ATP depletion was discarded as a major factor for both types of bleb. Inhibition of ROCK-I, MLCK and p38MAPK strongly decreased apoptotic blebbing but had no effect on necrotic blebbing. Taken together, these data suggest the existence of a novel structure of fixed dimensions at the neck of both types of plasma membrane blebs in epithelial cells. However, necrotic blebs can be distinguished from apoptotic blebs in their susceptibility to actomyosin kinase inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.