Regulatory T (Treg) cells that express forkhead box P3 (Foxp3) are pivotal for immune tolerance. Although inflammatory mediators cause Foxp3 instability and Treg cell dysfunction, their regulatory mechanisms remain incompletely understood. Here, we show that the transfer of Treg cells deficient in the activating immunoreceptor DNAM-1 ameliorated the development of graft-versus-host disease better than did wild-type Treg cells. We found that DNAM-1 competes with T cell immunoreceptor with Ig and ITIM domains (TIGIT) in binding to their common ligand CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function without DNAM-1–mediated intracellular signaling. DNAM-1 deficiency augments TIGIT signaling; this subsequently inhibits activation of the protein kinase B–mammalian target of rapamycin complex 1 pathway, resulting in the maintenance of Foxp3 expression and Treg cell function under inflammatory conditions. These findings demonstrate that DNAM-1 regulates Treg cell function via TIGIT signaling and thus, it is a potential molecular target for augmenting Treg function in inflammatory diseases.
During endurance exercises, a large amount of mitochondrial acetyl-CoA is produced in skeletal muscles from lipids, and the excess acetyl-CoA suppresses the metabolic flux from glycolysis to the TCA cycle. This study evaluated the hypothesis that taurine and carnitine act as a buffer of the acetyl moiety of mitochondrial acetyl-CoA derived from the short- and long-chain fatty acids of skeletal muscles during endurance exercises. In human subjects, the serum concentrations of acetylated forms of taurine (NAT) and carnitine (ACT), which are the metabolites of acetyl-CoA buffering, significantly increased after a full marathon. In the culture medium of primary human skeletal muscle cells, NAT and ACT concentrations significantly increased when they were cultured with taurine and acetate or with carnitine and palmitic acid, respectively. The increase in the mitochondrial acetyl-CoA/free CoA ratio induced by acetate and palmitic acid was suppressed by taurine and carnitine, respectively. Elevations of NAT and ACT in the blood of humans during endurance exercises might serve the buffering of the acetyl-moiety in mitochondria by taurine and carnitine, respectively. The results suggest that blood levels of NAT and ACT indicate energy production status from fatty acids in the skeletal muscles of humans undergoing endurance exercise.
DNAM-1 is an activating immunoreceptor on T cells and natural killer (NK) cells. Expression levels of its ligands, CD155 and CD112, are upregulated on tumor cells. The interaction of DNAM-1 on CD8 + T cells and NK cells with the ligands on tumor cells plays an important role in tumor immunity. We previously reported that mice deficient in DNAM-1 showed accelerated growth of tumors induced by the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). Contrary to those results, we show here that tumor development induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) together with DMBA was suppressed in DNAM-1–deficient mice. In this model, DNAM-1 enhanced IFN-γ secretion from conventional CD4 + T cells to promote inflammation-related tumor development. These findings suggest that, under inflammatory conditions, DNAM-1 contributes to tumor development via conventional CD4 + T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.