Balancing is a fundamental task in the motion control of bipedal robots. Compared to two-foot balancing, one-foot balancing introduces new challenges, such as a smaller supporting polygon and control difficulty coming from the kinematic coupling between the center of mass (CoM) and the swinging leg. Although nonlinear model predictive control (NMPC) may solve this problem, it is not feasible to implement it on the actual robot because of its large amount of calculation. This paper proposes the three-particle model predictive control (TP-MPC) approach. It combines with the hierarchical whole-body control (WBC) to solve the one-leg balancing problem in real time. The bipedal robot’s torso and two legs are modeled as three separate particles without inertia. The TP-MPC generates feasible swing leg trajectories, followed by the WBC to adjust the robot’s center of mass. Since the three-particle model is linear, the TP-MPC requires less computational cost, which implies real-time execution on an actual robot. The proposed method is verified in simulation. Simulation results show that our method can resist much larger external disturbance than the WBC-only control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.