An algorithm based on the physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from surface reflectances was developed and implemented for operational processing prior to the launch of the moderate resolution imaging spectroradiometer (MODIS) aboard the TERRA platform in December of 1999. The performance of the algorithm has been extensively tested in prototyping activities prior to operational production. Considerable attention was paid to characterizing the quality of the product and this information is available to the users as quality assessment (QA) accompanying the product. The MODIS LAI/FPAR product has been operationally produced from day one of science data processing from MODIS and is available free of charge to the users from the Earth Resources Observation System (EROS) Data Center Distributed Active Archive Center. Current and planned validation activities are aimed at evaluating the product at several field sites representative of the six structural biomes. Example results illustrating the physics and performance of the algorithm are presented together with initial QA and validation results. Potential users of the product are advised of the provisional nature of the product in view of changes to calibration, geolocation, cloud screening, atmospheric correction and ongoing validation activities. D
China has experienced rapid urbanization and dramatic economic growth since its reform process started in late 1978. In this article, we present evidence for a significant urbanization effect on climate based on analysis of impacts of land-use changes on surface temperature in southeast China, where rapid urbanization has occurred. Our estimated warming of mean surface temperature of 0.05°C per decade attributable to urbanization is much larger than previous estimates for other periods and locations. The spatial pattern and magnitude of our estimate are consistent with those of urbanization characterized by changes in the percentage of urban population and in satellite-measured greenness. Land-use changes from urbanization, creating an urban heat island (UHI), have been suspected as partially being responsible for the observed warming over land during the last few decades because of (i) the observed decrease in the diurnal temperature range (DTR) resulting from a larger increase or a smaller decrease in minimum temperature relative to maximum temperature and (ii) a lower rate of warming observed over the past 20 years in the lower troposphere compared with the surface (1). The area-weighted average warming effect of UHI over land during the 20th century has been estimated to be Ͻ0.06°C per century (1-4) globally and approximately 0.06ϳ0.15°C per century (5, 6) in the U.S. based on differences in temperature trends between rural and urban stations. A much larger estimate of 0.27°C per century in the U.S. has been reported recently (7) by comparing trends in observed and reanalysis surface temperatures over the period from 1950 to 1999.China has experienced rapid urbanization and dramatic economic growth since its reform process started in late 1978. From 1978 to 2000, China's gross domestic product grew at an average annual rate of 9.5%, compared with 2.5% for developed countries and 5% for developing countries; the number of small towns soared from 2,176 to 20,312, nearly double that of the world average during this period; the number of cities increased from 190 to 663; and the proportion of urban population rose from 18% to 39% (see the Peopledaily article at http:͞͞english. peopledaily.com.cn͞200111͞27͞eng2001112785410.shtml and the State Family Planning Commission of China web site at www.sfpc.gov.cn͞EN͞enews20030320-1.htm). In this article, we present evidence for a significant urbanization effect on climate based on analysis of impacts of land-use changes on surface temperature in southeast China, where most of China's urbanization has occurred. Data and MethodsThe UHI effect has been estimated by comparing observed temperatures in urban stations with those in their surrounding rural stations, but such results largely depend on how rural versus urban stations are classified and whether the data are homogeneous (7-9). Population data often are used to identify a station as urban and rural, but such information generally is out-of-date, and thus satellite measurements of night lights have been substituted re...
Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.