Ribosomal frameshifting is a rare
but ubiquitous process that is
being studied extensively. Meanwhile, frameshifting motifs without
any secondary mRNA structures were identified but rarely studied experimentally.
We report unambiguous observation of highly efficient “–1”
and “–2” frameshiftings on a GA7G
slippery mRNA without the downstream secondary structure, using force-induced
remnant magnetization spectroscopy combined with unique probing schemes.
The result represents the first experimental evidence of multiple
frameshifting steps. It is also one of the rare reports of the “–2”
frameshifting. Our assay removed the ambiguity of transcriptional
slippage involvement in other frameshifting assays. Two significant
insights for the frameshifting mechanism were revealed. First, EF-G·GTP
is indispensable to frameshifting. Although EFG·GDPCP has been
shown to prompt translocation before, we found that it could not induce
frameshifting. This implies that the GTP hydrolysis is responsible
for the codon–anticodon re-pairing in frameshifting, which
corroborates our previous mechanical force measurement of EF-G·GTP.
Second, translation in all three reading frames of the slippery sequence
can be induced by the corresponding in-frame aminoacyl tRNAs. Although
A-site tRNA is known to affect the partition between “0”
and “–1” frameshifting, it has not been reported
that all three reading frames can be translated by their corresponding
tRNAs. The in vitro results were confirmed by toe-printing
assay and protein sequencing.
Ribosomal protein synthesis is a central process of the modern biological world. Because the ribosome contains proteins itself, it is very important to understand its precursor and evolution. Small ribozymes have demonstrated the principle of “RNA world” hypothesis, but protein free peptide ligase remains elusive. In this report, we have identified two fragments in the peptidyl transfer center that can synthesize a 9-mer poly-lysine in a solution contains Mg
2+
. This result is deduced from isotope-shifting in high resolution MS. To our best knowledge, this is the longest peptide oligo that can be synthesized by a pure ribozyme. Via single molecule FRET experiments, we have demonstrated the ligase mechanism was probably by substrate proximity via dimerization. We prospect that these RNA fragments can be useful to synthesize template free natural and non-natural peptides, to be model system for peptidyl transfer reaction mechanism and can shed light to the evolution of ribosome.
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with –1 frameshifting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.