BackgroundThe primary issue arising from prostate cancer (PCa) is its high prevalence to metastasize to bone, which severely affects the quality of life and survival time of PCa patients. miR-210-3p is a well-documented oncogenic miRNA implicated in various aspects of cancer development, progression and metastasis. However, the clinical significance and biological roles of miR-210-3p in PCa bone metastasis remain obscure.MethodsmiR-210-3p expression was evaluated by real-time PCR in 68 bone metastatic and 81 non-bone metastatic PCa tissues. The biological roles of miR-210-3p in the bone metastasis of PCa were investigated both in vitro by EMT and Transwell assays, and in vivo using a mouse model of left cardiac ventricle inoculation. Bioinformatics analysis, real-time PCR, western blot and luciferase reporter analysis were applied to discern and examine the relationship between miR-210-3p and its potential targets. RT-PCR was performed to identify the underlying mechanism of miR-210-3p overexpression in bone metastasis of PCa. Clinical correlation of miR-210-3p with its targets was examined in human PCa and metastatic bone tissues.ResultsmiR-210-3p expression is elevated in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Overexpression of miR-210-3p positively correlates with serum PSA levels, Gleason grade and bone metastasis status in PCa patients. Upregulating miR-210-3p enhances, while silencing miR-210-3p represses the EMT, invasion and migration of PCa cells in vitro. Importantly, silencing miR-210-3p significantly inhibits bone metastasis of PC-3 cells in vivo. Our results further demonstrate that miR-210-3p maintains the sustained activation of NF-κB signaling via targeting negative regulators of NF-κB signaling (TNF-α Induced Protein 3 Interacting Protein 1) TNIP1 and (Suppressor Of Cytokine Signaling 1) SOCS1, resulting in EMT, invasion, migration and bone metastasis of PCa cells. Moreover, our results further indicate that recurrent gains (amplification) contribute to miR-210-3p overexpression in a small number of PCa patients. The clinical correlation of miR-210-3p with SOCS1, TNIP1 and NF-κB signaling activity is verified in PCa tissues.ConclusionOur findings unravel a novel mechanism for constitutive activation of NF-κB signaling pathway in the bone metastasis of PCa, supporting a functional and clinical significance of epigenetic events in bone metastasis of PCa.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0688-6) contains supplementary material, which is available to authorized users.
In a substantial fraction of prostate cancer (PCa) patients, bone metastasis appears after years or even decades of latency. Canonical Wnt/β-catenin signaling has been proposed to be implicated in dormancy of cancer cells. However, how these tumor cells are kept dormant and recur under control of Wnt/β-catenin signaling derived from bone microenvironment remains unknown. Here, we report that Wnt5a from osteoblastic niche induces dormancy of PCa cells in a reversible manner in vitro and in vivo via inducing Siah E3 Ubiquitin Protein Ligase 2 (SIAH2) expression, which represses Wnt/β-catenin signaling. Furthermore, this effect of Wnt5a-induced dormancy of PCa cells depends on receptor tyrosine kinase-like orphan receptor 2 (ROR2), and a negative correlation of ROR2 expression with bone metastasis–free survival is observed in PCa patients. Therefore, these results demonstrate that Wnt5a/ROR2/SIAH2 signaling axis plays a crucial role in inducing and maintaining PCa cells dormancy in bone, suggesting a potential therapeutic utility of Wnt5a via inducing dormancy of PCa cells in bone.
Bone metastasis is associated with cancer‐related death in patients with prostate cancer (PCa). Long noncoding RNAs (lncRNAs) play critical roles in tumor progression of PCa. Nevertheless, the biological function of lncRNAs in PCa bone metastasis remains unclear. PCAT7 was identified as a bone metastasis‐related lncRNA via analyzing TCGA dataset. Meanwhile, PCAT7 was found to be elevated in primary PCa tissues with bone metastasis and associated with bone metastasis status and poor prognosis of patients with PCa. Functionally, our results reveal that PCAT7 overexpression promotes PCa bone metastasis in vivo, as well as migration, invasion, and EMT of PCa cells in vitro; on the contrary, PCAT7 knockdown has an inverse effect. Mechanistically, PCAT7 activates TGF‐β/SMAD signaling by upregulating TGFBR1 expression via sponging miR‐324‐5p. In turn, TGF‐β signaling forms a positive feedback loop with PCAT7 via SMAD3/SP1 complex‐induced PCAT7 upregulation. Finally, the clinical positive correlation between PCAT7 and TGFBR1 and TGF‐β signaling activity, and the negative association with miR‐324‐5p are further demonstrated in PCa tissues and clinical primary PCa cells. This study reveals a novel mechanism that is responsible for the constitutive activation of TGF‐β signaling in PCa bone metastasis, implying that PCAT7 can act as a potential therapeutic target against bone metastasis of PCa via disrupting the constitutive active loop between PCAT7 and TGF‐β signaling.
The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.