In order to improve recognition accuracy of clothing style and fully exploit the advantages of deep learning in extracting deep semantic features from global to local features of clothing images, this paper utilizes the target detection technology and deep residual network (ResNet) to extract comprehensive clothing features, which aims at focusing on clothing itself in the process of feature extraction procedure. Based on that, we propose a multideep feature fusion algorithm for clothing image style recognition. First, we use the improved target detection model to extract the global area, main part, and part areas of clothing, which constitute the image, so as to weaken the influence of the background and other interference factors. Then, the three parts were inputted, respectively, to improve ResNet for feature extraction, which has been trained beforehand. The ResNet model is improved by optimizing the convolution layer in the residual block and adjusting the order of the batch-normalized layer and the activation layer. Finally, the multicategory fusion features were obtained by combining the overall features of the clothing image from the global area, the main part, to the part areas. The experimental results show that the proposed algorithm eliminates the influence of interference factors, makes the recognition process focus on clothing itself, greatly improves the accuracy of the clothing style recognition, and is better than the traditional deep residual network-based methods.
Aiming at the slow speed and low accuracy of traditional facial expression recognition, a new method combining the attention mechanism is proposed. Firstly, group convolution is used to reduce network parameters. The channels of traditional convolution are grouped to cut off redundant connections so that the number of parameters decreases significantly. Secondly, the ERFNet network model was improved by combining the asymmetric residual module and the weak bottleneck module to improve the running speed and reduce the loss of accuracy. Finally, the attention mechanism was added into the feature extraction network to improve the recognition precision. The experiment shows that compared with traditional face recognition methods, the proposed method can improve the recognition precision and recall significantly; in CK+, Jaffe, and Fer2013 datasets, the recognition precision can reach 88.81%, 82.16%, and 79.33%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.