Sports training is an important part of daily life, and various injuries are prone to occur during the training process. If they are not dealt promptly, they are bound to affect daily life. Although our nationals are becoming more and more aware of participating in physical exercise, they are performing numerous sports activities at the time of unexpected events, and sports injuries are becoming more and more frequent. To realize the evaluation and automatic prediction of sports training injury risk factors, a sports training injury risk evaluation algorithm using big data analysis is proposed. Establish a training injury risk analysis model, analyze the relevant parameters of training injury risk assessment through statistical and quantitative analyses, extract the entropy characteristics of training injury risk big data, optimize the decision-making and assessment process of injury risk through stable result assessment and fuzzy decision-making, and establish an expert system analysis model of sports training injury risk assessment. The hierarchical analysis method is applied to evaluate the training injury risk, and the adaptive fuzzy control is optimized to realize the optimal design of training injury risk assessment. Results show that this method has good adaptive characteristics and high certainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.