Artificial reefs are being implemented around the world for their multi-functions including coastal protection and environmental improvement. To better understand the hydrodynamic and morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were conducted in a 50 m-long wave flume configured with a 1:10 sloping beach and a model AR (1.8 m long × 0.3 m high) with 0.2 m submergence depth. Five regular and five irregular wave conditions were generated on two types of beach profiles (with/without model AR) to study the cross-shore hydrodynamic and morphological evolution process. The influences of AR on the processes are concluded as follows: (1) AR significantly decreases the incident wave energy, and its dissipation effect differs for higher and lower harmonics under irregular wave climates; (2) AR changes the cross-shore patterns of hydrodynamic factors (significant wave height, wave skewness and asymmetry, and undertow), leading to the movement of shoaling and breaking zones; (3) the beach evolution is characterized by a sandbar and a scarp which respectively sit at a higher and lower location on the profile with AR than natural beach without AR; (4) the cross-shore morphological features indicate that AR can lead to beach state transformation toward reflective state; (5) the scarp retreat process can be described by a model where the scarp location depends linearly on the natural exponential of time with the fitting parameters determined by wave run-up reduced by AR. This study demonstrates cross-shore effects of AR as a beach protection structure that changes wave dynamics in surf and swash zone, reduces offshore sediment transport, and induces different morphological features.
Groins are one of the popular manmade structures to modify the hydraulic flow and sediment response in river training. The spacing between groins is a critical consideration to balance the channel-depth and the cost of construction, which is generally determined by the backflow formed downstream from groins. A series of experiments were conducted using Particle Image Velocimetry (PIV) to observe the influence of groin spacing on the backflow pattern of two bilateral groins. The spacing between groins has significant effect on the behavior of the large-scale recirculation cell behind groins. The magnitude of the wake flow induced by a groin was similar to that induced by another groin on the other side, but the flow direction is opposite. The spanwise velocity near the groin tip dictates the recirculation zone width behind the groins due to the strong links between the spanwise velocity and the contraction ratio of channel cross-sections between groins. Based on previous studies and present experimental results, quantitative empirical relationships are proposed to calculate the recirculation zone length behind groins alternately placed at different spacing along riverbanks. This study provides better understanding and a robust formula to assess the backflow extent of alternate groins and identify the optimum groins array configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.