Th9 cells are a subset of CD4 + Th cells that produce the pleiotropic cytokine IL-9. IL-9/Th9 can function as both positive and negative regulators of immune response, but the role of IL-9/Th9 in tumor immunity is unknown. We examined the role of IL-9/Th9 in a model of pulmonary melanoma in mice. Lack of IL-9 enhanced tumor growth, while tumor-specific Th9 cell treatment promoted stronger antitumor responses in both prophylactic and therapeutic models. Th9 cells also elicited strong host antitumor CD8 + CTL responses by promoting Ccl20/Ccr6-dependent recruitment of DCs to the tumor tissues. Subsequent tumor antigen delivery to the draining LN resulted in CD8 + T cell priming. In agreement with this model, Ccr6 deficiency abrogated the Th9 cell-mediated antitumor response. Our data suggest a distinct role for tumor-specific Th9 cells in provoking CD8 + CTL-mediated antitumor immunity and indicate that Th9 cell-based cancer immunotherapy may be a promising therapeutic approach.
Multiple myeloma remains an incurable disease. One of the major problems is that myeloma cells develop drug resistance on interaction with bone marrow stromal cells. In this study, we examined the effects of macrophages (Mvarphis), a type of stromal cells, on myeloma cell survival and response to chemotherapy. We showed that Mvarphi, in particular tumor-associated Mvarphi, is a protector of myeloma cells. The protective effect was dependent on direct contact between Mvarphis and myeloma cells. Mvarphis protected both myeloma cell lines and primary myeloma cells from spontaneous and chemotherapy drug-induced apoptosis by attenuating the activation and cleavage of caspase-dependent apoptotic signaling. These findings are clinically relevant because we found that CD68+ Mvarphis heavily infiltrate the bone marrow of patients with myeloma but not the bone marrow of control patients. Thus, our results indicate that Mvarphis may contribute to myeloma cell survival and resistance to chemotherapeutic treatment in vivo.
The bone and immune systems are closely related through cellular and molecular interactions. Because bone-resorbing osteoclasts (OCs) are derived from the monocyte/macrophage lineage, similar to dendritic cells (DCs), we hypothesized that OCs could serve as antigen-presenting cells (APCs) to activate T cells. In this study, OCs were generated from human monocytes with stimulation by receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Results showed that, similar to DCs, OCs express major histocompatibility complex (MHC) classes I and II, and CD80, CD86, and CD40; and uptake soluble antigens. OCs secrete interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha), but not IL-12p70. OCs present allogeneic antigens and activate both CD4+ and CD8+ alloreactive T cells in an MHC-restricted fashion. OCs also present soluble protein tetanus toxoid to activate autologous CD4+ T cells. These findings indicate that OCs can function as APCs and activate both CD4+ and CD8+ T cells. Thus, our study provides new insight into the effect of OCs on the immune system and may help develop novel strategies for treating diseases such as rheumatoid arthritis and multiple myeloma, which affect both the bone and immune systems.
Because cytokine-priming signals direct CD8 + T cells to acquire unique profiles that affect their ability to mediate specific immune responses, here we generated IL-9-skewed CD8 + T (Tc9) cells by priming with Th9-polarized condition. Compared with type-I CD8 + cytotoxic T (Tc1) cells, Tc9 secreted different cytokines and were less cytolytic in vitro but surprisingly elicited greater antitumor responses against advanced tumors in OT-I/B16-OVA and Pmel-1/ B16 melanoma models. After adoptive transfer, Tc9 cells persisted longer and differentiated into IFN-γ-and granzyme-B (GrzB)-producing cytolytic Tc1-like effector cells. Phenotypic analysis revealed that adoptively transferred Tc9 cells secreted IL-2 and were KLRG-1 low and IL-7Rα high , suggesting that they acquired a signature of "younger" phenotype or became long-term lived cells with capacity of self-renewal. Our results also revealed that Tc9-mediated therapeutic effect critically depended on IL-9 production in vivo. These findings have clinical implications for the improvement of CD8 + T-cell-based adoptive immunotherapy of cancers.adoptive cell therapy | less-exhausted T cells | T-cell lineage plasticity
Chemoresistance is the major obstacle in multiple myeloma (MM) management. We previously showed that macrophages protect myeloma cells, on a cell contact basis, from melphalan or dexamethasone-induced apoptosis in vitro. In this study, we found that macrophage-mediated myeloma drug resistance was also seen with purified macrophages from myeloma patients’ bone marrow (BM) in vitro and was confirmed in vivo using the human myeloma-SCID (severe combined immunodeficient) mouse model. By profiling differentially regulated and paired plasma membrane protein genes, we showed that PSGL-1 (P-selectin glycoprotein ligand-1)/selectins and ICAM-1/CD18 played an important role in macrophage-mediated myeloma cell drug resistance, as blocking antibodies against these molecules or genetic knockdown of PSGL-1 or ICAM-1 in myeloma cells repressed macrophages’ ability to protect myeloma cells. Interaction of macrophages and myeloma cells via these molecules activated Src and Erk1/2 kinases and c-myc pathways and suppressed caspase activation induced by chemotherapy drugs. Thus, our study sheds new light on the mechanism of drug resistance in MM and provides novel targets for improving the efficacy of chemotherapy in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.