Static cold storage (SCS) and hypothermic machine perfusion (HMP) are two primary options for renal allograft preservation. Compared with SCS, HMP decreased the incidence of delayed graft function (DGF) and protected graft function. However, more evidence is still needed to prove the advantages of the HMP. In this study, the outcomes of kidney grafts from the two preservation methods were compared by conducting a systematic review and meta-analysis. Randomized controlled trials (RCTs) comparing the effect of hypothermic machine perfusion and static cold storage in deceased donor kidney transplantation were identified through searches of the MEDLINE, EMBASE, and Cochrane databases between January 1, 1980 and December 30, 2017. The primary endpoints were delayed graft function and graft survival. Secondary endpoints included primary non-function (PNF), graft renal function, duration of DGF, acute rejection, postoperative hospital stay and patient survival. Summary effects were calculated as risk ratio (RR) with 95% confidence interval (CI) or mean difference (MD) with 95% confidence intervals (CI). A total of 13 RCTs were included, including 2048 kidney transplant recipients. The results indicated that compared with SCS, HMP decreased the incidence of DGF (RR 0.78, 95% CI 0.69-0.87, P < 0.0001), and improved the graft survival at 3 years (RR 1.06, 95% CI 1.02-1.11, P = 0.009). There was no significant difference in other endpoints. HMP might be a more desirable method of preservation for kidney grafts. The long-term outcomes of kidney allografts stored by hypothermic machine perfusion still need to be further investigated.
Background:Recently, the prognostic value of the platelet-to-lymphocyte ratio (PLR) has been identified in multiple cancers. However, the prognostic significance of the PLR in prostate cancer (PCa) remains conflicting. We therefore searched relevant studies and conducted a meta-analysis.Methods:Papers from the databases of PubMed, Web of Science, and the Cochrane Library were retrieved. Six studies comprising 1324 patients were included.Results:The pooled analysis demonstrated that an elevated PLR predicted poor overall survival (OS; HR = 1.85, 95% CI = 1.51–2.25, P < .001) and disease-free survival (DFS; HR = 1.4, 95% CI = 1.1–1.79, P = .007). Subgroup analyses showed that the PLR remained a significant prognostic factor for OS irrespective of ethnicity, tumor stage, or cut-off value. The PLR was an indicator of poor DFS in Asian patients, but not in Caucasian patients. No significant publication bias was detected.Conclusion:This meta-analysis showed that a high PLR was correlated with poor DFS and OS in patients with prostate cancer. Due to this meta-analysis being derived from a few studies, the results should be validated in clinical practice.
BackgroundAlthough feeding behavior and food habit are ecologically and economically important properties, little is known about formation and evolution of herbivory. Grass carp (Ctenopharyngodon idella) is an ecologically appealing model of vertebrate herbivore, widely cultivated in the world as edible fish or as biological control agents for aquatic weeds. Grass carp exhibits food habit transition from carnivory to herbivory during development. However, currently little is known about the genes regulating the unique food habit transition and the formation of herbivory, and how they could achieve higher growth rates on plant materials, which have a relatively poor nutritional quality.ResultsWe showed that grass carp fed with duckweed (modeling fish after food habit transition) had significantly higher relative length of gut than fish before food habit transition or those fed with chironomid larvae (fish without transition). Using transcriptome sequencing, we identified 10,184 differentially expressed genes between grass carp before and after transition in brain, liver and gut. By eliminating genes potentially involved in development (via comparing fish with or without food habit transition), we identified changes in expression of genes involved in cell proliferation and differentiation, appetite control, circadian rhythm, and digestion and metabolism between fish before and after food habit transition. Up-regulation of GHRb, Egfr, Fgf, Fgfbp1, Insra, Irs2, Jak, STAT, PKC, PI3K expression in fish fed with duckweed, consistent with faster gut growth, could promote the food habit transition. Grass carp after food habit transition had increased appetite signal in brain. Altered expressions of Per, Cry, Clock, Bmal2, Pdp, Dec and Fbxl3 might reset circadian phase of fish after food habit transition. Expression of genes involved in digestion and metabolism were significantly different between fish before and after the transition.ConclusionsWe suggest that the food habit transition from carnivory to herbivory in grass carp might be due to enhanced gut growth, increased appetite, resetting of circadian phase and enhanced digestion and metabolism. We also found extensive alternative splicing and novel transcript accompanying food habit transition. These differences together might account for the food habit transition and the formation of herbivory in grass carp.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1217-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.