With the emergence of multidrug-resistant and extensively drug-resistant bacterial pathogens, phage therapy and other alternative or additional therapeutic modalities are receiving resurgent attention. One of the major obstacles in developing effective phage therapies is the evolution of phage resistance in the bacterial host. When Pseudomonas aeruginosa was infected with a phage that uses O-antigen as receptor, phage resistances typically achieved through changing or loss of O-antigen structure. In this study, we showed that dsRNA phage phiYY uses core lipopolysaccharide as receptor and therefore efficiently kills the O-antigen deletion mutants. Furthermore, by phage training, we obtained PaoP5-m1, a derivative of dsDNA phage PaoP5, which is able to infect mutants with truncated O-antigen. We then generated a cocktail by mixing phiYY and PaoP5-m1 with additional three wide host range P. aeruginosa phages. The phage cocktail was effective against a diverse selection of clinical isolates of P. aeruginosa, and in the short-term constrained the appearance of the phage-resistant mutants that had beleaguered the effectiveness of single phage. Resistance to the 5phage cocktail emerges after several days, and requires mutations in both wzy and migA Thus, this study provides an alternative strategy for designing phage cocktail and phage therapy.
Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota.
Cadmium (Cd) is widely used in daily life and was recently recognized as a possible source of human toxicity due to its ability to accumulate in organs. Previous studies have shown that Cd exposure may cause testicular toxicity through oxidative stress and an inflammatory effect. Melatonin has been demonstrated to be an effective anti-oxidant and has an anti-inflammatory effect. The aim of the present study was to investigate the toxicological effects of Cd on reproduction in male mice and the potential protective action of melatonin against these adverse effects. Adult male mice were injected intraperitoneally with Cd at a dose of 2 mg/kg body weight per day for seven consecutive days with or without melatonin pretreatment. Sex organ weight, sperm parameters including sperm quality, apoptosis, acrosome integrity, mitochondrial membrane potential, testicular morphology, serum sex hormone, inflammatory status, and oxidative stress were evaluated. The results showed that significant adverse effects were observed in the male reproductive system after Cd exposure, including alterations in sperm parameters, increased DNA damage, and sex hormone disturbance. Acute Cd exposure also significantly increased malondialdehyde (MDA) contents, decreased glutathione (GSH) and superoxide dismutase (SOD) activities, and upregulated levels of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β), in the testis. In contrast, melatonin pretreatment significantly alleviated these toxic effects, and its mechanism may involve inhibiting MDA level, restoring GSH and SOD activities, and reducing the upregulation of TNF-α and IL-1β. Our data suggest that oxidative stress and inflammation are involved in Cd-induced toxicity in the male reproductive system and that co-administration of melatonin exerts a protective effect against Cd-induced male reproductive toxicity.
The interactions between Bacteriophage (phage) and host bacteria are widespread in nature and influences of phage replication on the host cells are complex and extensive. Here, we investigate genome-wide interactions of Pseudomonas aeruginosa (P. aeruginosa) and its temperate phage PaP3 at five time points during phage infection. Compared to the uninfected host, 38% (2160/5633) genes of phage-infected host were identified as differentially expressed genes (DEGs). Functional analysis of the repressed DEGs revealed infection-stage-dependent pathway communications. Based on gene co-expression analysis, most PaP3 middle genes were predicted to have negative impact on host transcriptional regulators. Sub-network enrichment analysis revealed that adjacent genes of PaP3 interacted with the same host genes and might possess similar functions. Finally, our results suggested that during the whole infection stage, the early genes of PaP3 had stronger regulatory role in host gene expression than middle and late genes, while the host genes involved amino acid metabolism were the most “vulnerable” targets of these phage genes. This work provides the basis for understanding survival mechanisms of parasites and host, and seeking phage gene products that could potentially be used in anti-bacterial infection.
Toxin-antitoxin (TA) systems are small genetic modules that are widely distributed in the genomes of bacteria and archaea and have been proposed to fulfill numerous functions. Here, we describe the identification and characterization of a type II TA system, comprising the hicAB locus in the human opportunistic pathogen Pseudomonas aeruginosa. The hicAB locus consists of genes hicA and hicB encoding a toxin and its cognate antitoxin, respectively. BLAST analysis revealed that hicAB is prevalent in approximately 36% of P. aeruginosa strains and locates in the same genomic region. RT-PCR demonstrated that hicAB forms a bicistronic operon that is cotranscribed under normal growth conditions. Overproduction of HicA inhibited the growth of Escherichia coli, and this effect could be counteracted by co-expression of HicB. The Escherichia coli kill/rescue assay showed that the effect of HicA is bacteriostatic, rather than bactericidal. Deletion of hicAB had no effect on the biofilm formation and virulence of P. aeruginosa in a mice infection model. Collectively, this study presents the first characterization of the HicAB system in the opportunistic pathogen P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.