Polythioureas (PTUs) have been investigated as a dielectric material for an energy-storable capacitor in both experimental and computational approaches. However, the effect of dipolar polarization, closely associated with conformational H-bonding arrays, on dielectric properties under the operating frequency has never been studied in PTUs. Here, a series of PTUs with different spacers and additional dipoles are synthesized to explore the influence of conformations in thiourea units on their dielectric properties. The additional dipolar substituent (−COOH) contributes to a high dielectric constant, while accompanying a remarkable dielectric loss. Alternatively, a random copolymer is prepared to adjust the −COOH content, which displays a high dielectric constant and a suppressed dielectric loss. However, it requires strict control of the segmental ratio to meet the energy-storage demand. A neat alicyclic PTU with a flexible cyclohexyl spacer also exhibited a high dielectric constant and a low dielectric loss because of its rich trans/trans conformation, which brings about an increasing effective dipole moment per unit volume. Meanwhile, it retains high breakdown strength, thus leading to high electric energy density (U e ≈ 10 J/cm 3). These results suggest that tuning conformational H-bonding arrays based on molecular design is a more effective way to improve the dielectric properties of PTUs toward a very high energy storable material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.