We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and memorizes which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. Our model is considered to simulate the human-like writing process that gradually selects the information by determining the intermediate variables while writing the summary. In addition, we also explore the effectiveness of the writer information for generation. Experimental results show that our model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.
Existing models for data-to-text tasks generate fluent but sometimes incorrect sentences e.g., "Nikkei gains" is generated when "Nikkei drops" is expected. We investigate models trained on contrastive examples, that is, incorrect sentences or terms, in addition to correct ones to reduce such errors. We first create rules to produce contrastive examples from correct ones by replacing frequent crucial terms such as "gain" or "drop". We then use learning methods with several losses that exploit contrastive examples. Experiments on the market comment generation task show that 1) exploiting contrastive examples improves the capability to generate sentences with better lexical choices, without degrading the fluency, 2) the choice of the loss function is an important factor because the performances of different metrics depend on the types of loss functions, and 3) the use of the examples produced by some specific rules further improves performance. Human evaluation also supports the effectiveness of using contrastive examples.
We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and remembers which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. In addition, we also explore the effectiveness of the writer information for generation. Experimental results show that our model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.