PurposeThe HyperArc VMAT (HA-VMAT) planning approach was newly developed to fulfill the demands of dose delivery for brain metastases stereotactic radiosurgery. We compared the dosimetric parameters of the HA-VMAT plan with those of the conventional VMAT (C-VMAT).Material and methodsFor 23 patients (1–4 brain metastases), C-VMAT and HA-VMAT plans with a prescription dose of 20–24 Gy were retrospectively generated, and dosimetric parameters for PTV (homogeneity index, HI; conformity index, CI; gradient index, GI) and brain tissue (V2Gy-V16Gy) were evaluated. Subsequently, the physical characteristics (modulation complexity score for VMAT, MCSV; Monitor unit, MU) of both treatment approaches were compared.ResultsHA-VMAT provided higher HI (1.41 ± 0.07 vs. 1.24 ± 0.07, p < 0.01), CI (0.93 ± 0.02 vs. 0.90 ± 0.05, p = 0.01) and lower GI (3.06 ± 0.42 vs. 3.91 ± 0.55, p < 0.01) values. Moderate-to-low dose spreads (V4Gy-V16Gy) were significantly reduced (p < 0.01) in the HA-VMAT plan over that of C-VMAT. HA-VMAT plans resulted in more complex MLC patterns (lower MCSV, p < 0.01) and higher MU (p < 0.01).ConclusionsHA-VMAT plans provided significantly higher conformity and rapid dose falloff with respect to the C-VMAT plans.
PurposeIn stereotactic radiosurgery (SRS) with single‐isocentric treatments for brain metastases, rotational setup errors may cause considerable dosimetric effects. We assessed the dosimetric effects on HyperArc plans for single and multiple metastases.MethodsFor 29 patients (1–8 brain metastases), HyperArc plans with a prescription dose of 20–24 Gy for a dose that covers 95% (D95%) of the planning target volume (PTV) were retrospectively generated (Ref‐plan). Subsequently, the computed tomography (CT) used for the Ref‐plan and cone‐beam CT acquired during treatments (Rot‐CT) were registered. The HyperArc plans involving rotational setup errors (Rot‐plan) were generated by re‐calculating doses based on the Rot‐CT. The dosimetric parameters between the two plans were compared.ResultsThe dosimetric parameters [D99%, D95%, D1%, homogeneity index, and conformity index (CI)] for the single‐metastasis cases were comparable (P > 0.05), whereas the D95% for each PTV of the Rot‐plan decreased 10.8% on average, and the CI of the Rot‐plan was also significantly lower than that of the Ref‐plan (Ref‐plan vs Rot‐plan, 0.93 ± 0.02 vs 0.75 ± 0.14, P < 0.01) for the multiple‐metastases cases. In addition, for the multiple‐metastases cases, the Rot‐plan resulted in significantly higher V10Gy (P = 0.01), V12Gy (P = 0.02), V14Gy (P = 0.02), and V16Gy (P < 0.01) than those in the Ref‐plan.ConclusionThe rotational setup errors for multiple brain metastases cases caused non‐negligible underdosage for PTV and significant increases of V10Gy to V16Gy in SRS with HyperArc.
A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.