Fluoropolymer-based electrolyte membranes for fuel cells were prepared by using heavy ion beams from the cyclotron accelerator of the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), Japan Atomic Energy Agency (JAEA). The preparation method for these so-called nano-scale structure-controlled membranes involves (i) the swift heavy ion irradiation of polyvinylidene fluoride (PVDF) films and subsequent chemical etching to obtain cylindrical pores with a diameter of 100 nm, and (ii) the filling of proton-conducting polymer chains into the etched pores by gamma-ray-induced graft polymerization. The proton transport only in the thickness direction was observed for the resulting membranes with controlled ion exchange capacities, indicating the formation of one-dimensional straight proton-conducting pathways parallel to the ion-beam incident axis. The membranes exhibited a lower water uptake and reduced methanol permeability compared to commercially-available Nafion probably due to the restricted structures.
In this study, the effect of a tackifier on the viscoelastic and adhesion properties of acrylic pressure-sensitive adhesives (PSAs) was investigated. The intermediate products in the process of PSA synthesis, including an acrylate-based copolymer solution, a cross-linked copolymer, and the final product with a tackifier, were prepared and characterized using dynamic mechanical analysis (DMA). A significant increase in storage and loss moduli at high angular velocities was observed for the final product with the tackifier. The adhesion forces of the copolymer solution and the cross-linked copolymer measured by atomic force microscopy (AFM) were found to be almost independent of the release velocity, whereas that of the final product with the tackifier significantly increased at higher release velocities because of viscoelastic effects. Their fibrillations during the release process were also visualized using a charge-coupled device (CCD) camera installed on the cantilever holder. Although the contact area of the copolymer solution and the cross-linked copolymer with the probe surface decreased until detachment, the final product with the tackifier remained constant, with necking just below the probe surface. The increased storage and loss moduli were considered to resist the shrinkage of the contact area because the contact outline was subject to high shearing deformation, which led to localized high strain rates. Overall, the crucial role of the tackifier in maintaining the contact area for sufficient elongation during fibrillation was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.