We construct a model to describe dense hadronic matter at zero and finite temperature, based on the parity doublet model of DeTar and Kunihiro, with including the iso-singlet scalar meson σ as well as ρ and ω mesons. We show that, by including a six-point interaction of σ meson, the model reasonably reproduces the properties of the normal nuclear matter with the chiral invariant nucleon mass m0 in the range from 500 MeV to 900 MeV. Furthermore, we study the phase diagram based on the model, which shows that the value of the chiral condensate drops at the liquid-gas phase transition point and at the chiral phase transition point. We also study asymmetric nuclear matter and find that the first order phase transition for the liquid-gas phase transition disappears in asymmetric matter and that the critical density for the chiral phase transition at non-zero density becomes smaller for larger asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.