An avian tarsometatarsal (TMT) skeleton spanning from the base of toes to the intertarsal joint is a compound bone developed by elongation and lateral fusion of three cylindrical periosteal bones. Ontogenetic development of the TMT skeleton is likely to recapitulate the changes occurred during evolution but so far has received less attention. In this study, its development has been examined morphologically and histologically in the chick, Gallus gallus. Three metatarsal cartilage rods radiating distally earlier in development became aligned parallel to each other by embryonic day 8 (ED8). Calcification initiated at ED8 in the midshaft of cartilage propagated cylindrically along its surface. Coordinated radial growth by fabricating bony struts and trabeculae resulted in the formation of three independent bone cylinders, which further became closely apposed with each other by ED13 when the periosteum began to fuse in a back-to-back orientation. Bone microstructure, especially orientation of intertrabecular channels in which blood vasculature resides, appeared related to the observed rapid longitudinal growth. Differential radial growth was considered to delineate eventual surface configurations of a compound TMT bone, but its morphogenesis preceded the fusion of bone cylinders. Bony trabeculae connecting adjacent cylinders emerged first at ED17 in the dorsal and ventral quarters of intervening tissue at the mid-diaphyseal level. Posthatch TMT skeleton had a seemingly uniform mid-diaphysis, although the septa persisted between original marrow cavities. These findings provide morphological and histological bases for further cellular and molecular studies on this developmental process. Anat Rec, 293:1527Rec, 293: -1535
Fibrillin microfibrils are integral components of elastic fibers and serve as a scaffold for elastin deposition. However, microfibrillar fibers (MFs) are not necessarily committed to develop into so-called elastic fibers. In dermis, elastin-free oxytalan MFs originating from the dermoepidermal junction are continuous to elaunin-type MFs (with a small amount of elastin) in the deeper papillary dermis, whereas the reticular dermis contains elastic fibers, or MFs embedded largely in elastin. In this study, we have investigated temporospatial patterns of elastin deposition on the MFs in tarsometatarsal presumptive dermis. While the earliest expression of elastin was demonstrated immunohistochemically as early as embryonic day 4 (ED4) in the wall of cardiac outflow and pharyngeal arch arteries, its deposition in the tarsometatarsus was first detected at ED6 in the deeper mesenchyme and at ED13 in the subectodermal mesenchyme. In the latter tissue, MFs had been organized perpendicularly to the covering ectoderm by ED4, well before an overt accumulation of collagenous matrix. Elastin deposition was observed initially in a punctate manner at ED13 and afterward became continuous along MFs. However, a characteristic spaced array of subectodermal vertical MFs was disorganized by ED17. These findings suggest that elastin deposition in the subectodermal MFs is not deployed by continuous, orderly propagation from elastic fibers in the deeper mesenchyme but occurs de novo in multiple foci along vertical MFs. Moreover, the present chronology of elastin deposition indicates that subectodermal, elastin-free MFs function as a transient, but primary fibrous structure in the presumptive dermis before the accumulation of collagenous matrix.
Lysyl oxidase (LOX) plays a critical role in the formation of cross-linkages in extracellular matrix molecules. Thus, it is essential for the biogenesis and homeostasis of the connective tissue matrix. During development, collagen fibres and elastic system fibres emerge and accumulate in a temporospatial manner in the presumptive dermis of chicks. In this study, we investigated LOX mRNA expression by laser capture microdissection and RT-qPCR and LOX protein localization by immunohistochemistry. The picrosirius polarization method was used to investigate a relation between collagen accumulation and LOX expression. PCR analysis showed that the expression of LOX mRNA in the presumptive dermis became apparent at embryonic day 13 and increased considerably by ED17. Immunohistochemical staining for LOX in the dermis was very low at all stages of development. Accumulation of collagen fibres was seen in the dermis on ED10, and higher wavelengths of birefringence became evident by ED13. Our findings suggest that the temporal pattern of LOX mRNA expression correlates with collagen fibre accumulation in the dermis of the developing chick limb bud, whereas LOX expression was relatively constant at the protein level.
The morphogenesis of long bones is a multistep process that generates a variety of genetically defined forms. The tarsometatarsal (TMT) long bone morphology in birds develops through lateral fusion of three initially independent periosteal bone cylinders (BCs). Previous studies have clarified the histological details and chronology of the changes occurring during development. The present study investigated the temporospatial distribution of osteogenic and osteoclastic cells in the embryonic chicken using histochemistry for alkaline phosphatase and tartrate-resistant acid phosphatase, with particular reference to the radial growth of BCs and their subsequent fusion process. Osteogenic cells were localized preferentially in the periosteum of radially growing BCs, leaving open cancellous spaces in the BC wall. Osteoclasts observed later than embryonic day 10 were localized preferentially in the endosteal surface, and therefore the radial growth of BCs resulting from osteoblast activity was accompanied by endosteal resorption by osteoclasts, with progressive enlargement of the bone marrow spaces. During BC fusion, trabecular bridges were formed by periosteal osteogenic cells, with removal of the bone septum by endosteal osteoclasts. These findings suggest that fusion of BCs in the embryonic chicken is mediated by cellular events constituting ordinary long bone development, and not through a defined mechanism specific for fusion.
Palisaded encapsulated neuroma (PEN), defined by Reed et al. in 1972, is a benign nerve sheath tumor with characteristic clinical and histological features. Clinically, the lesion is a solitary, firm, asymptomatic nodule; histopathologically, it is a well-circumscribed, partially or completely encapsulated tumor. The tumor cells are composed of interlacing fascicles of spindle cells. Nuclear palisading is found on occasion, but Verocay bodies are unremarkable. Axons are also found in the fascicles. In European countries there have been many reports of PEN by dermatologists, but PEN arising in the oral mucosa is rare. In Japan there has been no reported case of PEN arising in the oral mucosa, although several cases involving the skin have been described by dermatologists. In this article, we present a case of PEN arising in the lower lip mucosa. A 36-year-old man visited our clinic because of a mass of the lower lip. We suspected a mucous cyst the basis of the clinical course and other findings, and the mass was removed under local anesthesia. The pathological diagnosis of the specimen was PEN. There was no sign of recurrence 8 months after surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.