Developmental constraints refer to biases that limit phenotypic changes during evolution. To examine the contribution of developmental constraints in the evolution of vertebrate morphology, we analyzed the distribution pattern of mammalian vertebral formulae. Data on mammalian vertebral formulae were collected from the Descriptive Catalogue of the Osteological Series Contained in the Museum of the Royal College of Surgeons of England by Richard Owen (1853) and were plotted onto the most reliable mammalian phylogenetic tree based on recent molecular studies. In addition to the number of cervical vertebrae that is almost fixed to 7, we found that the number of thoracolumbar vertebrae tends to be 19 in many groups of mammals. Since fidelity of the number of thoracolumbar vertebrae was also completely maintained in Monotremata and Marsupialia, we presumed that thoracolumbar vertebral number as well as cervical vertebral number might have been fixed in the primitive mammalian lineage. On the basis of primitive vertebral formulae, we could clarify the polarity of evolution and identify several deviations from the primitive states during the mammalian evolution. The changes in the vertebral formulae in eutherian mammals seem to be lineage-specific, such that most species in Carnivora have 20 instead of 19 thoracolumbar vertebrae. Because such lineage-specific vertebral formulae contrast with the estimated distribution pattern on the assumption of evolution only through the selective pressure, we concluded that developmental constraints played an important role in the evolution of mammalian vertebral formulae.
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.
The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.
The chelonian carapace is composed of dorsolaterally expanded ribs; an evolutionary change in the rib-patterning program is assumed to be related to this novelty. Turtle embryos exhibit a longitudinal ridge called the carapacial ridge (CR) on the flank, and its histological resemblance to the apical ectodermal ridge of the limb bud implies its inductive activity in the unique patterning of the ribs. We studied the Chinese soft-shelled turtle, Pelodiscus sinensis, and confirmed by labeling with a lipophilic dye, DiI, that the CR contains the somite-derived dermis and that it is a unique structure among amniotes. Using electroporation of a dominantnegative form of LEF-1, the CR-specific gene, we showed that CR-specific genes function in the growth and maintenance of the CR. Microcauterization or implantation of the CR did not change the dorsoventral pattern of the ribs, and only their fan-shaped pattern was arrested by CR removal. We conclude that the CR is a true embryonic novelty among amniotes and, because of the specific expression of regulatory genes, it functions in the marginal growth of the carapacial primordium, thereby inducing the fan-shaped arrangement of the ribs.
The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet-activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.