We define a toric degeneration of an integrable system on a projective manifold, and prove the existence of a toric degeneration of the Gelfand-Cetlin system on the flag manifold of type A. As an application, we calculate the potential function for a Lagrangian torus fiber of the Gelfand-Cetlin system.
We introduce a completely integrable system on the Grassmannian of 2-planes in an n-space associated with any triangulation of a polygon with n sides, and compute the potential function for its Lagrangian torus fiber. The moment polytopes of this system for different triangulations are related by an integral piecewise-linear transformation, and the corresponding potential functions are related by its geometric lift in the sense of Berenstein and Zelevinsky [BZ01].
The Gelfand-Cetlin system has non-torus Lagrangian fibers on some of the boundary strata of the moment polytope. We compute Floer cohomologies of such non-torus Lagrangian fibers in the cases of the 3-dimensional full flag manifold and the Grassmannian of 2-planes in a 4-space.
This is a short companion paper to [16]. We construct an integrable system on an open subset of a Fano manifold equipped with a toric degeneration, and compute the potential function for its Lagrangian torus fibers if the central fiber is a toric Fano variety admitting a small resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.