We surveyed the spatial and temporal distribution of Japanese sea nettle jellyfish Chrysaora pacifica in Omura Bay, Japan, using an environmental DNA (eDNA) method. In 2018, the C. pacifica eDNA concentration increased from March-May at all depths. The seasonal pattern of C. pacifica eDNA was consistent with previous reports based on visual observations along the Japanese coast. Thus, the eDNA method might have advantages to follow the seasonal pattern of C. pacifica while being less time-consuming and less laborious compared with traditional methods. The eDNA concentrations tended to reach a maximum near and/or below the pycnocline throughout this study. Therefore, the vertical distribution of C. pacifica medusae may have been restricted by strong pycnocline formation in July and August 2018. However, even with a weak pycnocline, which C. pacifica should be able to swim across, the apparent distribution of C. pacifica eDNA seems to be restricted by the pycnocline. Therefore, the eDNA method cannot, currently, accurately assess the absolute vertical distribution pattern of C. pacifica, especially when a pycnocline is formed.
Sea skatersHalobates matsumuraiEsaki andAsclepios shiranui(Esaki) are among the few marine insects found in Japan. For the past several decades, they have become rare in most localities and have now been designated as endangered by the government. In order to understand their adaptive strategies to the marine environment and to develop conservation measures, it is essential to know their life histories. We studied their lifecycles in Kujukushima Bay off the north coast of Kyushu (Japan) where they co-occurred in small coves along the jagged coast. They appeared to have more than one generation a year and to overwinter in the egg stage. Eggs ofH. matsumuraiwere laid on natural sandstones and man-made sandstone walls along the shore, mostly above the average sea level. The eggs had very hard shells, presumably adaptive to protect them from desiccation, solar radiation, and wave action, especially during the overwintering period.
There exist surprisingly few marine insects, most of which are confined to the intertidal zone. Halobates is the only genus to have some oceanic species along with some coastal species. Among the coastal sea skaters, that is, genus Halobates and its close relative, genus Asclepios, there are variations in their affinity for the shore. We have studied the distributions of two endangered Japanese sea skaters, Halobates matsumurai and Asclepios shiranui in Kujukushima, where they cooccur in coves. To compare their survival strategies at sea, we especially noted differences in their distributions along the shore during high and low tides. The results show that A. shiranui tended to remain along the shore during low tide. This species appeared to cling to the shore against the ebb current and to stay in the protected coves. By contrast, H. matsumurai tended to leave the shore during low tide. Notably, some adults were found skating outside the coves. The strategy of H. matsumurai appeared to be leaving with the ebb current even beyond the coves, thereby using more resources and enlarging its habitat. Some such coastal Halobates might have acquired the ability to live on the open ocean clearly independent of the shoreline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.