Gut microbiome shapes various aspects of a host’s physiology, but these functions in aquatic animal hosts have yet to be fully investigated. The sea cucumber Apostichopus japonicus Selenka is one such example. The large growth gap in their body size has delayed the development of intensive aquaculture, nevertheless the species is in urgent need of conservation. To understand possible contributions of the gut microbiome to its host’s growth, individual fecal microbiome comparisons were performed. High-throughput 16S rRNA sequencing revealed significantly different microbiota in larger and smaller individuals; Rhodobacterales in particular was the most significantly abundant bacterial group in the larger specimens. Further shotgun metagenome of representative samples revealed a significant abundance of microbiome retaining polyhydroxybutyrate (PHB) metabolism genes in the largest individual. The PHB metabolism reads were potentially derived from Rhodobacterales. These results imply a possible link between microbial PHB producers and potential growth promotion in Deuterostomia marine invertebrates.
It is known that experimental tooth movement stimulates the gene expression of connective tissue growth factor (CTGF) and induces apoptosis in osteocytes in rats. We hypothesized that there is a relationship between CTGF expression and the induction of apoptosis in osteocytes, to play a significant role in triggering bone remodeling during experimental tooth movement. In this study, CTGF mRNA expression was detected at 2 hours in osteocytes on the pressure side, followed by apoptosis at 6 hours after tooth movement in mice. The number of empty lacunae significantly increased on day 1 after mechanical stimulation. Thereafter, the number of osteoclasts significantly increased on the pressure side of the alveolar bone on day 3. Tooth movement increased rapidly on day 10. These findings suggest that CTGF expression, followed by apoptosis in osteocytes in response to mechanical stimulation, might play a significant role in triggering bone remodeling during tooth movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.