We establish almost sure limit theorems for a branching symmetric Hunt process in terms of the principal eigenvalue and the ground state of an associated Schrödinger operator. Here the branching rate and the branching mechanism can be state-dependent. In particular, the branching rate can be a measure belonging to a certain Kato class and is allowed to be singular with respect to the symmetrizing measure for the underlying Hunt process X. The almost sure limit theorems are established under the assumption that the associated Schrödinger operator of X has a spectral gap. Such an assumption is satisfied if the underlying process X is a Brownian motion, a symmetric α-stable-like process on R n or a relativistic symmetric stable process on R n .
We find the exponential growth rate of the population outside a ball with time dependent radius for a branching Brownian motion in Euclidean space. We then see that the upper bound of the particle range is determined by the principal eigenvalue of the Schrödinger type operator associated with the branching rate measure and branching mechanism. We assume that the branching rate measure is small enough at infinity, and can be singular with respect to the Lebesgue measure. We finally apply our results to several concrete models.
We obtain an upper escape rate function for a continuous time minimal symmetric Markov chain, defined on a locally finite weighted graph. This upper rate function is given in terms of volume growth with respect to an adapted path metric and has the same form as the manifold setting. Our approach also gives a slightly more restrictive form of Folz's theorem on conservativeness as a consequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.