Collectively, STXBP1 aberrations can account for about one-third individuals with EIEE (14 of 43). These genetic and biologic data clearly showed that haploinsufficiency of STXBP1 is the important cause for cryptogenic EIEE.
BackgroundVariants in the type IV collagen gene (COL4A1/2) cause early-onset cerebrovascular diseases. Most individuals are diagnosed postnatally, and the prenatal features of individuals with COL4A1/2 variants remain unclear.MethodsWe examined COL4A1/2 in 218 individuals with suspected COL4A1/2-related brain defects. Among those arising from COL4A1/2 variants, we focused on individuals showing prenatal abnormal ultrasound findings and validated their prenatal and postnatal clinical features in detail.ResultsPathogenic COL4A1/2 variants were detected in 56 individuals (n=56/218, 25.7%) showing porencephaly (n=29), schizencephaly (n=12) and others (n=15). Thirty-four variants occurred de novo (n=34/56, 60.7%). Foetal information was available in 47 of 56 individuals, 32 of whom (n=32/47, 68.1%) had one or more foetal abnormalities. The median gestational age at the detection of initial prenatal abnormal features was 31 weeks of gestation. Only 14 individuals had specific prenatal findings that were strongly suggestive of features associated with COL4A1/2 variants. Foetal ventriculomegaly was the most common initial feature (n=20/32, 62.5%). Posterior fossa abnormalities, including Dandy-Walker malformation, were observed prenatally in four individuals. Regarding extrabrain features, foetal growth restriction was present in 16 individuals, including eight individuals with comorbid ventriculomegaly.ConclusionsPrenatal observation of ventriculomegaly with comorbid foetal growth restriction should prompt a thorough ultrasound examination and COL4A1/2 gene testing should be considered when pathogenic variants are strongly suspected.
Mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase deficiency (mHS deficiency) is a rare autosomal recessive inborn error of ketogenesis caused by a mutation in the
HMGCS2
gene, which is characterized by non‐(hypo)‐ketotic hypoglycemia, lethargy, and hepatomegaly during acute infection and/or prolonged fasting. Clinical presentations are similar to fatty acid oxidation defects; however, diagnosis of mHS deficiency is difficult because of poor biochemical markers. We report the case of a 12‐month‐old Japanese boy with mHS deficiency who presented with a coma, and hepatomegaly, but no hypoglycemia after a febrile episode and poor oral intake. Metabolic acidosis and severe fatty liver were observed. Serum acylcarnitine analysis revealed a slightly decreased free carnitine (C0) level and an increased acetylcarnitine (C2) level. Urinary organic acid analysis revealed hypoketotic dicarboxylic aciduria, and increased excretions of glutarate, and, retrospectively, 4‐hydroxy‐6‐methyl‐2‐pyrone. Although the patient did not present with hypoglycemia, the severe fatty liver and elevated free fatty acids to total ketone bodies ratio strongly suggested an inborn error of ketogenesis. In the analysis of the
HMGCS2
gene, compound heterozygous mutations of c.130_131ins C (L44PfsX29) and c.1156_1157insC (L386PfsX73) were identified, which led to the diagnosis of mHS deficiency. He had recovered without any complication by the therapy, including intravenous glucose infusion. Unlike the previously reported cases of mHS deficiency, our case did not present with hypoglycemia and the fatty liver lasted over several months. mHS deficiency should be taken into consideration when a patient has severe metabolic acidosis and fatty liver with no or subtle ketosis, even without hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.