A plain IF steel and a P-added IF steel having various ultrafine grain sizes from 0.24 to 11 mm were fabricated by the accumulative roll bonding (ARB) process followed by annealing. Dynamic fracture toughness of the ultrafine grained IF steels was investigated as a function of grain size by miniaturized Charpy impact test. The static strength of the IF steels significantly increased with decreasing the grain size, while the uniform elongation was limited in the ultrafine grained samples. A number of delamination appeared in the impact-tested specimens, especially in the ultrafine grained materials at low temperatures. It was concluded that the frequent delamination is not owing to insufficient roll-bonding in the ARB specimens but it is rather a characteristic feature of the ultrafine grained materials fabricated through heavy deformation. Because of the delamination, the absorbed energy in the impact test continuously decreased with decreasing the test temperature. On the other hand, an obvious change from the ductile fracture surface characterized by dimples into the brittle fracture surface mainly due to intergranular fracture was recognized at a certain low temperature. The ductile-brittle transition temperature determined from the microscopic fracture surfaces greatly decreased with decreasing the grain size, and finally no brittle fracture happened even at À190 C when the grain size was smaller than 5 mm or 2 mm in the plain IF steel or the P-added IF steel, respectively. It was concluded that the ultra-grain refinement is quite effective to improve the low-temperature toughness of ferritic steels and that it is possible to make phosphorus substantially harmless by grain refinement.
The present authors have invented a novel and simple thermomechanical processing to realize the ultrafine grained microstructure in carbon steels. The key of the process is to start from martensite structure. In the previous study, it has been clarified that conventional coldrolling to a reduction in thickness of only 50% (equivalent strain of 0.8) and subsequent annealing at warm temperature around 500 8C fabricates the multi-phased ultrafine grained structure composed of the ultrafine ferrite grains with mean grain size of 180 nm, uniformly precipitated nano cementite and tempered martensite. In this study, the effect of the rolling reduction ranging from 25 to 70% (equivalent strains of 0.3-1.5) on the ultrafine grained structure and the mechanical properties of the plain low-carbon steel (Fe -0.13 wt% C) processed from martensite starting structure was studied. In the as-deformed specimen, the area fraction of the region showing the lamellar structure, which is typical for severely rolled metals, increased with increasing the rolling reduction and the strength also increased. After annealing at warm temperature around 500 8C, the multi-phased ultrafine grained microstructures were obtained in all the examined rolling reductions. The area fraction of the region showing the ultrafine ferrite grains increased with increasing the rolling reduction. At higher temperature, conventional recrystallization took place, and the recrystallization temperature became lower with increasing the reduction. Tensile test exhibited that the specimen rolled to the intermediate reduction (50%) performed the best strength-ductility balance (870 MPa of tensile strength and 9% of uniform elongation). The reason for the good strength-ductility balance of the specimen rolled to the intermediate reduction was discussed on the basis of the observed microstructures. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.