Natural restoration of historical wetland plant communities in fallow fields with a degraded seed bank has been assumed to be possible only if source populations of the target species are present adjacent to the abandoned fields and a high density of suitable microsites is available. However, few studies have monitored both factors simultaneously and verified this assumption. We hypothesized that plant communities that are similar to historical wetlands, including back marshes, back swamps, and bogs, will reestablish in abandoned pasturelands in cases when (1) gaps for new recruitment emerge, followed by the decline of pastures; and (2) seeds with longevity are supplied from the surrounding remnant plant communities of wetlands. We conducted a survey of vegetation and microsites in pastures, abandoned pastures, and reference wetlands followed by structural equation modeling to verify our hypothesis for the natural restoration of Phragmites australis–Phalaris arundinacea and Alnus japonica–Spiraea salicifolia communities. These communities represent historical back marshes and back swamps along a river. However, our hypothesis was not verified for the natural restoration of Vaccinium oxycoccos–Sphagnum spp. communities, which represent plant communities in historical bogs grown on acidic peat that are maintained by rainfall and fog. Our findings partly support our hypothesis that decline in pastures creates gaps and that cumulative seed dispersal from nearby remnant wetlands allows the original wetland plant communities to regenerate. Further case studies are needed to determine how the natural restoration of bog plant communities occurs.
It has recently been proposed that microrefugia played an important role in species survival during past climate change events. However, the current distributions of microrefugia remain largely unknown. Wind-hole sites are areas affected by preferential flows of cool air generated in interstitial spaces created by rock fragments or colluvia. Alpine plant species occurring in lowland wind-hole sites isolated from alpine zones may be relicts of the last glacial period. Hokkaido, northern Japan, is known to contain many wind-hole sites in which alpine plant species can occur. Here we surveyed 55 wind-hole sites in the Kitami region, eastern Hokkaido, and observed two alpine plant species (lingonberry, Vaccinium vitis-idaea, and Labrador tea, Rhododendron groenlandicum ssp. diversipilosum var. diversipilosum) in 14 wind-hole sites. Statistical modeling showed that wind-hole sites are likely to occur in areas with high maximum slope angles and volcanic rock cover, and concave surfaces. Our predictions of wind-hole site distributions suggest that such topographic conditions are common in our study area, and that many undiscovered wind-hole sites exist. Ignoring microhabitats may greatly underestimate species distributions in topographically complex regions, and dispersed cool spots may also function as stepping stones and temporal habitats for cold-adapted species. Because these localized unique habitats usually occur in economically unproductive sites, identifying and protecting potential microrefugia (cool spots) would be a robust and cost-effective mitigation of climate change impacts.
In this article, we focused on hummocky microtopography as a prominent feature of mires and explored the microenvironmental conditions suitable for alder seedling establishment. Japanese alder (Alnus japonica) forest is widely distributed in wetlands in northern Japan. However, because alder seedlings are rare in mires, alder population dynamics and conditions that favor the establishment of alder seedlings are still unknown. The study was conducted in northern Japan at a site in mesotrophic mire. We surveyed the seedling density, the microenvironmental conditions (light, litter cover, and soil quality), and the density of dispersed seeds in alder forest and in the adjacent herbaceous fen. In addition, we performed a laboratory experiment to examine the germination characteristics of alder. Seedlings grew only on hummocks in alder forest. The percentage of litter cover on hummocks was lower than in hollows, and the density of dispersed seeds in alder forest was much higher than in herbaceous fen. Seeds of Japanese alder germinated under both light and dark conditions, and the germination rate were high under light and high-temperature conditions. Our results suggest that litter cover may inhibit seedling establishment and hummocks that characterized by less litter cover are suitable place for the establishment of seedlings. We conclude that hummocky microtopography and abundant seed rain in the mire enable the establishment of Japanese alder seedlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.