A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.
Summary
A prerequisite for antibody secretion and function is the assembly into a defined quaternary structure, composed of two heavy and two light chains for IgG. Unassembled heavy chains are actively retained in the endoplasmic reticulum (ER) until they associate with light chains. Our mechanistic analysis of this critical quality control step revealed that, unlike all other antibody domains studied, the CH1 domain of the murine IgG1 heavy chain is an intrinsically disordered protein in isolation. It adopts the typical immunoglobulin fold only upon interaction with its cognate partner, the CL domain. Structure formation proceeds via a trapped intermediate, can be accelerated by the ER-specific peptidyl-prolyl isomerase cyclophilin B, and is modulated by the molecular chaperone BiP. BiP recognizes incompletely folded states of the CH1 domain and competes for binding to the CL domain. In vivo experiments demonstrate that requirements identified for folding the CH1 domain in vitro, including association with a folded CL domain and isomerization of a conserved proline residue, are essential for antibody assembly and secretion in the cell.
In Fig. 3 and its inset the vertical scales should be reduced by a factor of 4. This plotting error affects only the figure. All relevant quantities in the text and in the table are correct as published. We regret the oversight.The corrected version of Fig. 3 is reproduced here. This correction does not affect any results or conclusions of the published paper.FIG. 3. Inclusive ÿ ; K spectrum on Si at K 6 2 . The curves are the calculated spectra for the repulsive (solid) and shallow (dashed) -nucleus potentials, fitted to the measured spectrum. A value of the scaling factor and 2 per degree of freedom are shown for each fitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.