Tile-based virtual reality (VR) video consists of highresolution tiles that are displayed in accordance with the users' viewing directions and a low-resolution tile that is the entire VR video and displayed when users change their viewing directions. Whether users perceive quality degradation when watching tile-based VR video depends on high-resolution tile size, the quality of high-and low-resolution tiles, and network condition. The display time of low-resolution tile (hereafter delay) affects users' perceived quality because longer delay makes users watch the low-resolution tiles longer. Since these degradations of low-resolution tiles markedly affect users' perceived quality, these points have to be considered in the qualityestimation model. Therefore, we propose a bitstream-quality-estimation model for tile-based VR video streaming services and investigate the effect of bitstream parameters and delay on tile-based VR video quality. Subjective experiments on several videos of different quality and a comparison between other video quality-estimation models were conducted. In this paper, we prove that the proposed model can improve the quality-estimation accuracy by using the high-and low-resolution tiles' quantization parameters, resolution, framerate, and delay. Subjective experimental results show that the proposed model can estimate the quality of tile-based VR video more accurately than other video quality-estimation models.
In this paper, a metadata-based quality-estimation model is proposed for tile-based omnidirectional video streaming services, aiming to realize quality monitoring during service provision. In the tile-based omnidirectional video (ODV) streaming services, the ODV is divided into tiles, and the high-quality tiles and the low-quality tiles are distributed in accordance with the user's viewing direction. When the user changes the viewing direction, the user temporarily watches video with the low-quality tiles. In addition, the longer the time (delay time) until the high-quality tile for the new viewing direction is downloaded, the longer the viewing time of video with the low-quality tile, and thus the delay time affects quality. From the above, the video quality of the low-quality tiles and the delay time significantly impact quality, and these factors need to be considered in the quality-estimation model. We develop quality-estimation models by extending the conventional quality-estimation models for 2D adaptive streaming. We also show that the quality-estimation model using the bitrate, resolution, and frame rate of high-and low-quality tiles and that the delay time has sufficient estimation accuracy based on the results of subjective quality evaluation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.